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1. Introduction

The super-conformal gauge theories living on D3-branes at singularities generally admit

marginal deformations. A particularly interesting case of marginal deformation for theories

with U(1)3 global symmetries is the so called β-deformation [1]. The most famous example

is the β-deformation of N = 4 SYM which has been extensively studied both from the

field theory point of view and the dual gravity perspective. In particular, in [2], Lunin and

Maldacena found the supergravity dual solution, which is a completely regular AdS5 back-

ground. Their construction can be generalised to the super-conformal theories associated

with the recently discovered Sasaki-Einstein backgrounds AdS5×Lp,q,r [3]. More generally,

all toric quiver gauge theories admit β-deformations [4] and, as we will see, have regular

gravitational duals. The resulting β-deformed theories are interesting both from the point

of view of field theory and of the gravity dual.

On the field theory side, we deal with a gauge theory with a deformed moduli space

of vacua and a deformed spectrum of BPS operators. The case of N = 4 SYM has been

studied in details in the literature [5 – 7]. In this paper we extend this analysis to a generic

toric quiver gauge theory. The moduli space of the β-deformed gauge theory presents the

same features as in N = 4 case. In particular, its structure depends on the value of the

deformation parameter β. For generic β the deformed theory admits a Coulomb branch

which is given by a set of complex lines. For β rational there are additional directions

corresponding to Higgs branches of the theory.

On the gravity side, the dual backgrounds can be obtained from the original Calabi-

Yaus with a continuous T-duality transformation using the general method proposed in [2].

We show that it is possible to study the β-deformed background even in the cases where

the explicit original Calabi-Yau metric is not known. The toric structure of the original

background is enough. Besides the relevance for AdS/CFT, the β-deformed backgrounds

are also interesting from the geometrical point view. They are Generalised Calabi-Yau

manifolds [8, 9]: after the deformation the background is no longer complex, but it still

admits an integrable generalised complex structure. Actually the β-deformed backgrounds

represent one of the few explicit known examples of generalised geometry solving the equa-

tion of motions of type II supergravity.1 The extreme simplicity of such backgrounds make

it possible to explicitly apply the formalism of Generalised Complex Geometry, which, as

we will see, provides an elegant way to study T-duality and brane probes [13 – 16].

The connection between gravity and field theory is provided by the study of super-

symmetric D-brane probes moving on the β-deformed background. In this paper we will

1For other non compact examples see [10, 11] and for compact ones [12].
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analyse the case of static D3 and D5 probes, as well as the case of D3 and D5 dual giant

gravitons. We will study in details existence and moduli space of such probes. We show

that, in the β-deformed background, both static D3 probes and D3 dual giants can only

live on a set of intersecting complex lines inside the deformed Calabi-Yau, corresponding

to the locus where the T 3 toric fibration degenerates to T 1. This is in agreement with the

abelian moduli space of the β-deformed gauge theory which indeed consists of a set of lines.

Moreover, in the case of rational β, we demonstrate the existence of both static D5 probes

and D5 dual giant gravitons with a moduli space isomorphic to the original Calabi-Yau

divided by a Zn × Zn discrete symmetry. This statement is the gravity counterpart of the

fact that, for rational β, new branches are opening up in the moduli space of the gauge

theory [5, 6]. Our analysis also generalises the results of [17] where it has been shown that

the classical phase space of supersymmetric D3 dual giant gravitons in the undeformed

Calabi-Yau background is isomorphic to the Calabi-Yau variety.

The classical way to study probe configuration is to solve the equations of motion com-

ing from the probe Dirac-Born-Infeld action. Generalised Complex Geometry provides an

alternative method to approach the problem. As we will explain, a D-brane is characterised

by its generalised tangent bundle. The dual probes in the β-deformed geometry can be

obtained from the original ones applying T-duality to their generalised tangent bundles.

The approach in terms of Generalised Geometry allows also to clarify how the complex

structure of the gauge theory is reflected by the gravity dual, which, as we have already

mentioned, is not in general a complex manifold.

The study of brane probes we present here can be seen as consisting of two independent

and complementary sections, one dealing with the Born-Infeld approach and the other one

using Generalised Complex Geometry. We decided to keep the two analysis independent,

so that the reader not interested in one of the two can skip the corresponding section.

The paper is organized as follows. In section 2 we discuss the structure of the β-

deformed gauge theory and of its gravity dual, and we characterize it in terms of pure

spinors. In section 3 we study the moduli space of D3 and D5-brane, static probes and

dual giant gravitons, on the deformed background using the Born-Infeld action, while in

section 4 we analyse the same configurations using the generalised tangent bundle approach.

We will show that, as usual for BPS quantities, the explicit knowledge of the Calabi-Yau

metric is not required to extract sensible results. Our analysis thus applies to the most

general toric background. In section 5 we briefly comment about supersymmetric giant

gravitons in the deformed background. In section 6 we explicitly demonstrate through

examples and general arguments that the results of sections 3 and 4 agrees with the field

theory analysis which is performed in details. Finally, in the appendices we collect various

technical proofs, arguments and examples.

2. β-deformation in toric theories

2.1 β-deformed quiver gauge theories

The entire class of super-conformal gauge theories living on D3-branes at toric conical

Calabi-Yau singularities admits marginal deformations. The most famous example is the

– 3 –
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β-deformation of N = 4 SYM with SU(N) gauge group where the original superpotential

Φ1Φ2Φ3 − Φ1Φ3Φ2 (2.1)

is replaced by the β-deformed one

eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2 . (2.2)

A familiar argument due to Leigh and Strassler [1] shows that the β-deformed theory is

conformal for all values of the β parameter.

Similarly, a β-deformation can be defined for the conifold theory. The gauge the-

ory has gauge group SU(N) × SU(N) and bi-fundamental fields (Ai)
A
α and (Bp)

α
A with

α,A = 1, . . . , N, i, p = 1, 2 transforming in the representations (2, 1) and (1, 2) of the

global symmetry group SU(2) × SU(2), respectively, and superpotential

A1B1A2B2 −A1B2A2B1 . (2.3)

The β-deformation corresponds to the marginal deformation where the superpotential is

replaced by

eiπβA1B1A2B2 − e−iπβA1B2A2B1 . (2.4)

Both theories discussed above possess a U(1)3 geometric symmetry corresponding to

the isometries of the internal space, one U(1) is an R-symmetry while the other two act

on the fields as flavour global symmetries.2 The β-deformation is strongly related to the

existence of such U(1)3 symmetry and has a nice and useful interpretation in terms of

non-commutativity in the internal space [2]. The deformation is obtained by selecting in

U(1)3 the two flavour symmetries Qi commuting with the supersymmetry charges and using

them to define a modified non-commutative product. This corresponds in field theory to

replacing the standard product between two matrix-valued elementary fields f and g by

the star-product

f ∗ g ≡ eiπβ(Qf∧Qg)fg (2.5)

where Qf = (Qf1 , Q
f
2 ) and Qg = (Qg1, Q

g
2) are the charges of the matter fields under the

two U(1) flavour symmetries and

(Qf ∧Qg) = (Qf1Q
g
2 −Qf2Q

g
1) . (2.6)

The β-deformation preserves the U(1)3 geometric symmetry of the original gauge the-

ory, while other marginal deformations in general further break it.

All the superconformal quiver theories obtained from toric Calabi-Yau singularities

have a U(1)3 symmetry corresponding to the isometries of the Calabi-Yau and therefore

admit exactly marginal β-deformations. The theories have a gauge group
∏G
i=1 SU(N),

2This U(1)3 symmetry can be enhanced to a non abelian one in special cases. For instance it is SU(4) for

N = 4 SYM and SU(2)×SU(2)×U(1)R for the conifold. In addition the conifold possesses a U(1)B baryonic

symmetry. A generic toric quiver, besides the geometric symmetry U(1)3 = U(1)2F ×U(1)R, presents several

baryonic U(1) symmetries. In this paper we will only be interested in the geometric symmetries of these

theories.
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bi-fundamental fields Xi and a bipartite structure which is inherited from the dimer con-

struction [18]. The superpotential contains an even number of terms V naturally divided

into V/2 terms weighted by a +1 sign and V/2 terms weighted by a −1 sign

V/2
∑

i=1

Wi(X) −
V/2
∑

i=1

W̃i(X) . (2.7)

The β-deformed superpotential is obtained by replacing the ordinary product among fields

with the star-product (2.5) and, as discussed in appendix B, can always be written after

rescaling fields as [4]

eiαπβ
V/2
∑

i=1

Wi(ϕ) − e−iαπβ
V/2
∑

i=1

Wi(ϕ) (2.8)

where α is some rational number. It is obvious how N = 4 SYM and the conifold fit in

this picture; other examples will be given in section 6.

The β-deformation drastically reduces the mesonic moduli space of the theory, which

is originally isomorphic to the N -fold symmetric product of the internal Calabi-Yau. To see

quickly what happens consider the case where the SU(N) groups are replaced by U(1)’s -

by abuse of language we can refer to this as the N = 1 case. Physically, we are considering

a mesonic direction in the moduli space where a single D3-brane is moved away from the

singularity. In the undeformed theory the D3-brane probes the Calabi-Yau while in the

β-deformed theory it can only probe a subvariety consisting of complex lines intersecting

at the origin. This can be easily seen in N = 4 and in the conifold case.

For N = 4 SYM the F-term equations read

ΦiΦj = bΦjΦi, (i, j) = (1, 2), (2, 3) or (3, 1) (2.9)

where b = e−2iπβ. Since Φi are c-numbers in the N = 1 case, these equations are trivially

satisfied for β = 0, implying that the moduli space is given by three unconstrained complex

numbers Φi, giving a copy of C
3. However, for β 6= 0 these equations can be satisfied only

on the three lines given by the equations Φj = Φk = 0 for j 6= k. Only one field Φi is

different from zero at a time.

For the conifold the F-term equations read

B1A1B2 = b−1B2A1B1 ,

B1A2B2 = b B2A2B1 ,

A1B1A2 = b A2B1A1 ,

A1B2A2 = b−1A2B2A1 . (2.10)

These equations are again trivial for β = 0 and N = 1, the fields becoming commuting

c-numbers. The brane moduli space is parametrized by the four gauge invariant mesons

x = A1B1, y = A2B2, z = A1B2, w = A2B1 (2.11)

which are not independent but subject to the obvious relation xy = zw. This is the familiar

description of the conifold as a quadric in C
4. For β 6= 0, the F-term constraints (2.10) are
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solved when exactly one field A and one field B are different from zero. This implies that

only one meson can be different from zero at a time. The moduli space thus reduces to the

four lines

y = z = w = 0 , x = z = w = 0 , x = y = z = 0 , x = y = w = 0. (2.12)

We will see in section 3.2 using the dual gravity solutions and in section 6 using field

theory that for all β-deformed toric quivers the abelian mesonic moduli space is reduced to

d complex lines, where d is the number of vertices in the toric diagram of the singularity.

Something special happens for β rational. New branches in the moduli space open up.

The N = 4 case was originally discussed in [5] and the conifold in [19]. In all cases these

branches can be interpreted as one or more branes moving on the quotient of the original

Calabi-Yau by a discrete Zn × Zn symmetry. We will describe these branes explicitly in

the gravitational duals in section 3.2. The field theory analysis of these vacua requires a

little bit of technical patience and it is deferred to section 6.

2.2 β-deformed toric manifolds

The general prescription for determining the supergravity dual of a β-deformed theory has

been given by Lunin and Maldacena [2]. The original background has a U(1)3 isometry and

the prescription amounts to performing a particular T-duality along two U(1) directions

commuting with the supersymmetry charges.

For a quiver gauge theory, the undeformed gravity solution is a warped product of

4-dimensional Minkowski times a Calabi-Yau cone over a Sasaki-Einstein manifold

ds210 = e2Ads24 + e−2Ads26 , (2.13)

where the warp factor is e2A = r2. In all the formulae we are omitting factors of the radius

of Anti de Sitter (see footnote 3 at page 9).

In the toric case these Calabi-Yaus have exactly three isometries and the Lunin-

Maldacena method can be applied. In [2] the β-deformation of the conifold and of Y pq

spaces are explicitly computed using the known metrics for these Sasaki-Einstein spaces.

In this paper we consider the general case of a toric Calabi-Yau cone. We will show that, as

usual, most computations regarding supersymmetric quantities can be performed without

knowing the explicit form of the metric. We will just need the general characterisations of

the Calabi-Yau metrics given in [20] which we now review.

2.2.1 The geometry of toric Calabi-Yau cones

The geometry of a toric Calabi-Yau cone is completely determined by d integer vectors

Vα ∈ Z
3. In fact there is a very explicit description of toric cones as T 3 fibrations over a

rational polyedron described by [20]

C∗ = {y ∈ R
3|lα(y) = V i

αyi ≥ 0, α = 1 . . . d} (2.14)

where Vα are the inward pointing vectors orthogonal to the facets of the polyedral cone.

The T 3 fibration degenerates to T 2 on the facets of the polyedron, lα(y) = 0, and further

– 6 –
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(0,−1,1)

(1,1,1)(−1,0,1) (0,0,1) (0,1,1)

(0,0,1) (1,0,1)

Figure 1: The toric diagram for C3 and the conifold consisting of the points Vα = (vα, 1) pictured

in the plane z = 1 in R3. The vectors Vα determine a rational polyedron in R3 with three and four

sides, respectively, whose projection on the plane z = 1 is shown in the figure.

degenerates to T 1 on the edges (intersections of two facets). As a simple example, the trivial

Calabi-Yau C
3 parametrized by three complex variables Zi =

√
2yie

iψi
can be considered

as a T 3 fibration, parameterised by the three angles ψi, over the first octant in R
3 given

by the three equations yi ≥ 0. Here V1 = (1, 0, 0), V2 = (0, 1, 0), and V3 = (0, 0, 1). In

the following we will make a convenient change of coordinates in order to have the third

coordinate of all Vα equal to one. Similarly, the conifold can be described as a T 3 fibration

over a polyedron with four sides, as shown in figure 1.

As shown in [20] the metric on the Calabi-Yau cone can be written as

ds26 = gijdyidyj + gijdφ
idφj (2.15)

with gij the inverse matrix of gij . Due to the toric condition, gij only depends on the

variables yi; the metric is a cone if and only if gij is homogeneous of degree −1 in y.

Regularity of the metric implies that near the facets

gij =

d
∑

α=1

V i
αV

j
α

lα(y)
+ regular terms . (2.16)

The Calabi-Yau condition further requires that the vectors Vα lie on a plane. We will

choose coordinates where Vα = (vα, 1). The integer points in the plane, vα, describe the

toric diagram of the Calabi-Yau.

As in [20] we can also use complex coordinates to describe the manifold

zi = xi + iφi . (2.17)

A Kälher metric can be written in terms of a Kälher potential F (zi). In the toric case F

only depends on the real part, xi, of the coordinates so that, if we define

gij =
∂2F

∂xi∂xj
, (2.18)

the metric can be written as

ds26 = gijdz
idz̄j = gijdx

idxj + gijdφ
idφj . (2.19)

– 7 –
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There is a nice relation between symplectic and complex coordinates given by

yi =
∂F

∂xi
(2.20)

and, as the notation suggests, the function gij(x) appearing in the complex coordinates

form of the metric is the same as the function gij(y) appearing in the symplectic form of

the metric after changing variables from x to y.

The Kähler form and the holomorphic three-form are given by

J(0) ≡ i

2
gijdz

i ∧ dz̄j , (2.21)

Ω(0) ≡ eiα
√

det gijdz
1 ∧ dz2 ∧ dz3 (2.22)

= ex
3+iφ3

dz1 ∧ dz2 ∧ dz3 . (2.23)

As shown in [20], the explicit form of Ω(0) given in (2.23) follows from Ricci-flatness, which

implies det gij = e2x
3
, and correlates the phase in Ω(0) with the complex direction z3

associated with the third component of the vectors Vα = (vα, 1).

The R-symmetry of the gauge theory is dual to the Reeb vector of the Sasaki-Einstein

space

K =
3
∑

i=1

bi
∂

∂φi
, (2.24)

where the components bi = 2gijyj turn out to be constants [20]. Moreover the third

component b3 is set to 3 by the Calabi-Yau condition. The vector b = (bi, 3) satisfies

gijb
ibj = r2. (2.25)

The Reeb vector K is the partner under the complex structure of the dilatation oper-

ator r∂r. Notice that the conical form of the metric is hidden both in the symplectic and

complex coordinates. The very same radial coordinate r is given by a non-trivial expression

depending on the actual value of the Reeb vector

r2 = 2biyi . (2.26)

2.2.2 The β-deformed Calabi-Yau

The β-deformation of toric Calabi-Yaus can be obtained as in [2]. For simplicity we will

consider β real in the following. We consider a two-torus in the internal manifold and we

perform a T-duality transformation that acts on the complexified Kähler modulus of the

two-torus as

ν = BT 2 + i
√

det gT 2 → ν

1 + γν
. (2.27)

Here we choose the T 2 in the directions (φ1, φ2) since the action leaves the holomorphic

three-form invariant. The parameter γ in supergravity is proportional to the β-parameter

in the gauge theory.

The T-dual metric and B-field can be computed via Buscher rules

E = g −B2 → (dE + c)(bE + a)−1 (2.28)

– 8 –
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by embedding the O(2, 2) transformation (2.27) in O(6, 6)

OLM =

(

a b

c d

)

=

(

Id6 β

0 Id6

)

, (2.29)

where the bivector β is defined as

β = γ







03 0 0

0 iσ2 0

0 0 0






. (2.30)

The choice of the two-torus introduces a four plus two splitting in the metric that can

be made explicit by rewriting it in the following form

ds26 = habχ
a
(0)χ̄

b
(0) + ZZ̄ a, b = 1, 2 (2.31)

where hab = gab is the metric on the two-torus and we have defined the one-forms

χa(0) = dza + hacgc3dz
3 a = 1, 2 , (2.32)

= (dxa + hacgc3dx
3) + i(dφa + hacgc3dφ

3) = Xa + iY a (2.33)

Z = eiφ
3
√

g33 − habga3gb3 dz3 =
dw3

r2
√
h

(2.34)

with h = det(hab)/r
4. The subscript (0) is to distinguish these forms from the correspond-

ing one in the T-dual background. We also defined w3 = ez
3
. The one form Z parameterises

the direction orthogonal to the two-torus and to pass from the first to the second expression

in (2.34) we used the identity

det(gij) = e2x
3

= det(hab)(g33 − habga3gb3) . (2.35)

The advantage of writing the metric as in (2.31) is that the T-duality transforma-

tion (2.29) results simply in a rescaling of its angular part

ds26 = habX
aXb +GhabY

aY b + ZZ̄ (2.36)

by the function

G =
1

1 + γ2h
. (2.37)

The antisymmetric part of (2.28) gives the NS two-form of the β-deformed solution

B = γ hGY 1 ∧ Y 2 . (2.38)

The dilaton and the warp factor are

eΦ =
√
G , eA = r , (2.39)

– 9 –
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respectively, while the non-vanishing RR fields are given by3

F5 = 4vol4 ∧
dr

r
+ 4GvolX5 , (2.40)

F3 = −4γ ω2 ∧ dφ3 = dC2 , (2.41)

where volX5 = ∗6
dr
r = ω2 ∧ dφ1 ∧ dφ2 ∧ dφ3 is the volume form of the undeformed Sasaki-

Einstein manifold X5, and the closed form ω2 depends only on the xi coordinates.

2.3 The β-deformed pure spinors

Recently it has been shown that a unifying formalism to treat N = 1 compactifications

with non trivial background fluxes is provided by Generalised Complex Geometry. For a

detailed discussion of pure spinors, Generalised Complex Geometry and its applications to

string theory see [21, 22, 12]; here we will very briefly summarise what we will need in the

following section.

The idea is, given a manifold, to study objects defined on the sum of the tangent and

cotangent bundles, T ⊕ T ∗. We can for instance define spinors on T ⊕ T ∗: these will be

SO(6,6) spinors and have a representation in terms of differential forms of mixed degree,

Λ•(T ∗). We call pure the spinors that are annihilated by half of the generators of Cliff(6,6).

They are represented by sum of even and odd forms, Φ±, corresponding to the positive

and negative chirality, respectively.

The relevance for supergravity lies in the observation that such pure spinors can be

obtained as tensor products of ordinary spinors. More precisely, if we decompose the type

IIB ten-dimensional supersymmetry parameters as

εi = ζ+ ⊗ ηi+ + ζ− ⊗ ηi− , (2.42)

where ζ+ (ζ− = ζ∗+) and ηi+ (ηi− = ηi∗+ ) are positive chirality spinors in four and six

dimensions, the pure spinors are defined as

Φ+ = η1
+ ⊗ η2†

+ , (2.43)

Φ− = η1
+ ⊗ η2†

− . (2.44)

The spinors constructed this way define an SU(3) × SU(3) structure on T ⊕ T ∗.4 By

introducing an inner product between forms (Mukai pairing)

〈A,B〉 ≡ (A ∧ λ(B))|top λ(An) = (−)Int[n/2] , (2.45)

we can define the norm of the pure spinors as

〈Φ+, Φ̄+〉 = 〈Φ−, Φ̄−〉 = − i

8
||Φ||2 vol6 = − i

8
||η1||2||η2||2 vol6 . (2.46)

3In all the formulae for the background we are understanding factors of the AdS5 radius, L, which is

given by: L4 = 4π4gsNα′2/V ol(X5), where N is the number of D3-branes and X5 is the undeformed

Sasaki-Einstein manifold. In particular the metric ds2
10 has a factor of L2, the NS flux H a factor of L4,

F3 and F5 a factor of L4/gs and G should be defined as: G−1 = 1 + γ2L4h. Our formulae are in the string

frame and we will set α′ = 1.
4The pure spinors must obey the SU(3)× SU(3) compatibility conditions 〈Φ−,X ·Φ+〉 = 〈Φ−,X ·Φ̄+〉 = 0

for any element X = X + ξ of T ⊕ T ∗, where X and ξ are a vector and a one-form, respectively.
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It is convenient to introduce normalised twisted spinors

Ψ̂± = e−Φe−B ∧ Ψ± =
8i

||Φ||e
−Φe−B ∧ Φ± . (2.47)

All the NS content of the background (internal metric, B field and dilaton) can be extracted

from Ψ̂±. Moreover the twisted pure spinors are those transforming nicely under T-duality.

Using the above definition as bispinors, it is possible to rewrite the supersymmetry

conditions for type IIB supergravity as differential equations for the pure spinors Ψ̂±

d(e3AΨ̂−) = 0 , (2.48)

d(e2A ImΨ̂+) = 0 , (2.49)

d(e4A ReΨ̂+) = −e4Ae−B ∗ λ(F ) . (2.50)

Here the ∗ is with respect to the six dimensional internal metric e−2Ads26 and F is the sum

of the internal magnetic fields F = F1 + F3 + F5. It is related to the ten-dimensional RR

fields as F (10) = F +vol4∧λ(∗F ). The ten-dimensional Bianchi identity (d−H∧)F (10) = 0

yields the Bianchi identity and the equations of motion for F : (d −H∧)F = 0 and (d +

H∧)(e4A ∗ F ) = 0, respectively. Notice that the equations of motion follow automatically

from (2.50).

The pure spinor satisfying d(e3AΨ̂) = 0, defines a twisted generalised Calabi-Yau [21,

22]. Thus one can interpret the closure of the pure spinor coming from the supersymmetry

variations as the generalisation to the flux case of the standard Calabi-Yau condition for

fluxless compactifications: all N = 1 vacua are Generalised Calabi-Yau manifolds [9].

The explicit form of the pure spinors depends on how the internal supersymmetry

parameters ηi are related to the globally defined spinors on the manifold. For the toric

Calabi-Yau manifolds there is one globally defined (in this case covariantly constant) spinor,

η+, so that one can choose

η1
+ = eA/2η+, η2

+ = ieA/2η+ , (2.51)

and the pure spinors are given in terms of the Kälher form and holomorphic three-form

Ψ̂
(0)
− = e−3AΩ(0) = e−3Adz1 ∧ dz2 ∧ dw3 , (2.52)

Ψ̂
(0)
+ = e−ie

−2AJ(0) = e1/2 e
−2Agijdz

i∧dz̄j

. (2.53)

In the Calabi-Yau background the dilaton and the NS two-form are zero, so that there is

no difference between twisted and untwisted spinors.

We now want to construct the pure spinors corresponding to the β-deformed back-

grounds as the T-duals of the Calabi-Yau ones. As shown in [23] the T-duality transfor-

mation (2.29) on the pure spinors is given by

Ψ̂(0) → Ψ̂ = eβ · Ψ̂(0) = (1 + β) · Ψ̂(0) , (2.54)
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where β is a bivector associated with the two U(1) isometries, φ1 and φ2, of the Calabi-Yau.

It acts on the pure spinor by contractions5

β = γ ι∂φ1 ∧ ι∂φ2 = γ ι∂φ1 ι∂φ2 . (2.56)

Applying (2.56) to (2.53) and (2.52) we obtain a new pair of pure spinors (here we

have undone the twist)

Ψ− = γ
√
Ge−3Adw3 ∧ e

1
γ
dz1∧dz2+B

, (2.57)

Ψ+ =
√
Ge−ie

−2AJ(0)−γhX
1∧X2+B , (2.58)

where B = γ hGY 1 ∧ Y 2 is the NS two-form of the β-deformed background.6 The usual

SU(3)× SU(3) compatibility conditions between Ψ̂− and Ψ̂+ continue to hold since the

Mukai pairing is invariant under a general SO(6, 6) transformation.

The expression for the closed pure spinor, (2.57), has a nice interpretation in terms of

the generalised Darboux theorem [22]. The pure spinors (2.57), (2.58) are of type (1, 0)

and determine a splitting into four coordinates of symplectic type and two of complex

type. The closure condition d(e3AΨ̂−) = 0 implies the existence of symplectic-complex

coordinates (ξi, z), i = 1, . . . , 4 with

e3A−ΦΨ− = eik0+B̃ ∧ dz , (2.63)

where k0 = dξ1∧dξ2 +dξ3 ∧dξ4 is the natural symplectic form and B̃ is a potential for H,

dB̃ = H [22]. The symplectic coordinates predicted by the theorem are easily identified

5A generator of O(6, 6) acts linearly on the elements of T ⊕T ∗. If we define a generic element of T ⊕T ∗

as (X, ξ), with X a vector and ξ a one form, we have
 

X

ξ

!

→
 

A β

B −AT

!  

X

ξ

!

, (2.55)

where A is an SO(6) element, A = An
mdxm ⊗ ι∂xn , B is a two-form B = 1

2
Bmndxm ∧ dxn, and β is a

bivector β = 1
2
βmnι∂xm ∧ ι∂xn . Then O(6, 6) element corresponding to the β-deformation, (2.29), is just

the bivector and and thus acts as in (2.56) on a generic differential form.
6It is a straightforward computation to show that these pure spinors are equivalent to the dielectric ones

in [11]

Ψ− = (− sin 2φei(α+β)e−Az) ∧ e
i Reω

sin 2φe2A −cot 2φ Imω

e2A , (2.59)

Ψ+ =

„

cos 2φ − ie−2Aj − cos 2φ

2
e−2Aj2 + sin 2φe−2AImω

«

e
zz̄

2e2A

with sin 2φ = −γ
√

h
√

G, cos 2φ =
√

G. The SU(2) structure

j =
i

2
(χ1 ∧ χ̄1 + χ2 ∧ χ̄2) , (2.60)

ω = i
√

hχ1 ∧ χ2 , (2.61)

is defined in terms of the vielbein adapted to the β-deformed metric (2.36)

χi = Xi + i
√

GY i . (2.62)

As before, the analogous quantities with superscript (0) refer to the original Calabi-Yau metric.
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from equation (2.57)

1

γ
dz1 ∧ dz2 +B ≡ i

γ
(dx1 ∧ dφ2 − dx2 ∧ dφ1) + B̃ (2.64)

with the real and imaginary parts of the original complex coordinates of the Calabi-Yau

(xi, φi); B̃ = B+ 1
γ (dx1∧dx2−dφ1∧dφ2). We see that, although the β-deformed manifold

looks very complicated and it is not even a complex manifold, the generalised geometry

selects coordinates that are trivially related to the original complex coordinates of the

Calabi-Yau. As a consequence, all questions about supersymmetric and BPS quantities in

the β-deformed background can be still analysed in terms of the original complex coordi-

nates. This is not completely unexpected, since the β-deformed N = 1 gauge theory has a

natural complex structure for all values of β.

In terms of the pure spinors it is straightforward to check that the T-dual background

is still supersymmetric. If we assume that φ1,2 are supersymmetry-preserving isometries,

L∂
φ1,2 Ψ̂ = 0, then L∂φ1 (ι∂φ2 Ψ̂) = 0 and

d(β · Ψ̂) = γd(ι∂φ1 ι∂φ2 Ψ̂) = −γι∂φ1d(ι∂φ2 Ψ̂) = γι∂φ1 ι∂φ2dΨ̂ = β · dΨ̂ . (2.65)

Thus for a Ψ̂ which is invariant along φ1, φ2

d(eβ · Ψ̂) = eβ · dΨ̂ . (2.66)

Then from (2.66) it follows that the T-dual spinors satisfy the supersymmetry condi-

tions, (2.48)–(2.50), if the original ones do. The T-dualised RR fields can be computed

from e−B ∗ λ(F ) = eβ · e−B(0) ∗ λ(F (0)). For the β-deformation of the quiver theories, this

gives in particular

F5 = ∗d(4A) = GF
(0)
5 , (2.67)

F3 = ∗(B ∧ ∗F5) , F1 = 0 . (2.68)

One can check that these are the same as in (2.40) and (2.41) and satisfy (2.50) with the

pure spinor given by (2.58).

Finally, it is also easy to verify that the topology of the β-transformed background is

the same as that of the original one, which was assumed to be smooth. The only points

where one can have topology changes are the edges of the symplectic cone C∗, where the

circles defined by φ1,2 shrink to zero. These are precisely the points where the bivector β

vanishes. To see this we can use the definition of the toric manifold as a T 3 fibration over

the symplectic cone C∗ [20]. On the α-th facet of the cone C∗ a given combination of the

three angles φi degenerates. The precise combination can be read from the corresponding

vanishing vector

Kα =
3
∑

i=1

V i
α

∂

∂φi
= v1

α

∂

∂φ1
+ v2

α

∂

∂φ2
+

∂

∂φ3
(2.69)

where Vα = (vα, 1) is the vector orthogonal to the facet. Thus, on the α-facet only one

linear combination of the three angles φi degenerates. This is not enough in general to
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make the bivector β vanishing. On the other hand, consider the edge of C∗ corresponding

to the intersection of the α-th and α+1-th facets; the vector Kα−Kα+1 = (vα−vα+1)
1∂φ1+

(vα− vα+1)
2∂φ2 also vanishes. Since the (two-dimensional) integer vectors vaα and vaα+1 are

not equal,7 it follows that the killing vectors ∂φ1 and ∂φ2 are proportional and β vanishes.

Thus β vanishes precisely on the edges of the cone.

If the original SO(6, 6) spinor Ψ̂(0) is regular, then at these points

β · Ψ̂(0) → 0 . (2.70)

Thus, at these degenerate points

Ψ̂ ≃ Ψ̂(0) . (2.71)

Since a background is completely specified by Ψ̂−, Ψ̂+ and F , at the degeneration points the

new background looks similar to the original one. Hence it is regular as well, as discussed

from the metric point of view in [2].

3. D3 and D5 probes

The connection between gravity and field theory is provided by the study of supersymmet-

ric D-brane probes moving on the β-deformed background. We first analyse space-time

filling static D-brane probes, easily extending the results of [2] to a generic Calabi-Yau

background. A parallel analysis is performed for non-static probes, in particular dual giant

gravitons [24], corresponding to brane probes wrapping a three-sphere in AdS5 and spin-

ning in the internal manifold. The case of dual giants in the β-deformed N = 4 SYM has

been analysed in [25].

In this section we perform an analysis based on the effective Lagrangian on the world-

volume of a probe moving in the deformed background. In the next section we will discuss

the same results from the point of view of T-duality and supersymmetry, using the Gener-

alised Geometry perspective.

Note that curvatures of the β-deformed backgrounds are small only for small values

of the parameter β [2]. Therefore strictly speaking the comparison with field theory can

be done only in this range. However the field theory computations in section 6 can be

trusted for generic values of β and they always match with the supergravity description.

We expect therefore our results to hold for generic values of β.

3.1 Static probes

The moduli space of space-time filling supersymmetric static four-branes should reproduce

the mesonic moduli space of the dual gauge theory. In the undeformed background we just

have a single type of static supersymmetric probe, a D3-brane which can live at every point

of the internal manifold. Correspondingly, the abelian moduli space of the dual field theory

is isomorphic to the Calabi-Yau cone. In the deformed background, we have two different

types of static supersymmetric probes, D3-branes, and dielectric D5-branes wrapped on

7Recall that vα determines the toric diagram of the Calabi-Yau so no consecutive vα can be equal.
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the (T-duality) two-torus and stabilized by a world-volume flux [2]. Supersymmetric D3-

probes can only live on a set of intersecting complex lines inside the deformed Calabi-Yau,

corresponding to the locus where the T 3 toric fibration degenerates to T 1. This is in

agreement with the abelian moduli space of the β-deformed gauge theory which indeed

consists of a set of lines. In the case of rational β, there exist supersymmetric D5-probes

with a moduli space isomorphic to the original Calabi-Yau divided by a Zn × Zn discrete

symmetry. This statement is the gravity counterpart of the fact that for rational β new

branches are opening up in the moduli space of the gauge theory [5, 6].

3.1.1 Static D3 probes

Consider a static space-time filling D3-brane probe. The dynamics is governed by the brane

world-volume action

SD3 = SBI + SCS = −T3

∫

d4ζe−Φ
√

− detGµν + T3

∫

C4 . (3.1)

Gµν is the pull back of the space-time metric gMN to the world-volume of the D3-brane

Gµν =
∂XM∂XN

∂ζµ∂ζν
gMN , (3.2)

where (ζ0, ζ1, ζ2, ζ3) are the world-volume coordinates on the brane. The ten-dimensional

metric is given by

ds210 = r2dxµdx
µ +

1

r2
ds2X6

. (3.3)

By inserting in the BI and CS terms the explicit expression of the background fields (2.39)–

(2.40), we see that a D3-probe feels a potential given by

∫

d4ζV (yi) ∼
∫

d4ζ r4
(

1√
G

− 1

)

, (3.4)

where yi are the coordinates on the internal space. The potential is positive definite and

vanishes when G ≡ 1 or equivalently h ≡ 0. h vanishes precisely along the edges of the

cone C∗, where the T 3 fibration degenerates to T 1. In fact, it is easy to see from the explicit

behaviour of the metric near the facets, given in equation (2.16), that h is regular and non

vanishing in the interior of the cone and also in the interior of the facets. On the other

hand, as follows from equation (2.16), on the edge where the adjacent facets α and α + 1

intersect, h vanishes as

h ∼ lα(y)lα+1(y)

| < Vα, Vα+1 > |2 . (3.5)

We conclude that a supersymmetric D3-probe can only move along the d edges of the

symplectic cone.8 Recall that the topology of the deformed theory is the same as that of

8As it is easy to see, this is also true when the Sasaki-Einstein manifold is not smooth, that is when some

edge of the toric diagram passes through integer points. More generally our conclusions about the moduli

spaces of D3 and D5-branes are unaffected by the presence of conical singularities on the Sasaki-Einstein

manifold.
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the original Calabi-Yau, allowing to reason in terms of fibrations. Moreover, locally, the

metric near the degeneration locus is substantially identical to the original one.

We expect that a single D3-brane probes the abelian moduli space of the dual gauge

theory. What we found is compatible with the results for N = 4 SYM and the conifold

discussed in section 2.1. There we found that the abelian moduli space consists of three and

four lines, respectively. These lines exactly correspond to the edges of the polyedral cone

discussed in section 2.2. From the gravity analysis we thus get the general prediction that

the abelian moduli space of toric quiver gauge theories is given by a collection of d lines,

where d is the number of external vertices of the toric diagram. We will verify explicitly

this prediction in section 6 with field theory methods.

3.1.2 Static D5 probes

As noticed in [2] a D5-brane wrapped on the two-torus (φ1, φ2) with a world-volume flux

F = dφ1 ∧ dφ2/γ is supersymmetric. It is easy to see that a similar configuration exists for

all Calabi-Yau backgrounds. The supersymmetric D5-brane can live at an arbitrary point

in (yi, φ
3) and can have additional moduli corresponding to Wilson lines on the two-torus.

It is interesting to analyse the moduli space of such configuration, since it corresponds to

a particular non abelian branch of the dual gauge theory.

Consider therefore a D5-brane wrapping the two-torus spanned by (φ1, φ2) in the

internal manifold. The corresponding embedding is

xµ = ζµ, φ1 = ζ4, φ2 = ζ5,

φ3 = φ3(ζµ), yi = yi(ζ
µ) µ = 0, 1, 2, 3 , (3.6)

where we call (ζ0, . . . , ζ5) the world-volume coordinates on the brane. The world-volume

action for a D5-brane is

SD5 = −T5

∫

d6ζe−Φ
√

− det(G−B + F)αβ

+T5

∫

C6 + C4 ∧ (F −B) + C2 ∧ (F −B) ∧ (F −B) , (3.7)

where we define F = 2πα′F , with F dimensionless. We will set α′ = 1 as in the other

supergravity computations.

For the six-dimensional metric we will use the expression (2.36) in symplectic coordi-

nates

ds2X6
= gijdyidyj + g̃ijdφ

idφj (3.8)

= gijdyidyj +Ghabdφ
adφb + 2Gga3dφ

adφ3 + [g33 − (1 −G)habga3gb3](dφ
3)2 .

Here and in the rest of this section the indices i, j and a, b are summed over 1, 2, 3 and 1, 2,

respectively. All the functions in the above ansatz depend on the coordinates yi only since

the angular directions are isometries of the background.

The pulled-back metric is given by






r2ηµν + 1
r2

(

gij∂µyi∂νyj + g̃33∂µφ
3∂νφ

3
)

G∂νφ
3g13 G∂νφ

3g23
G∂µφ

3g13 Gh11 Gh12

G∂µφ
3g23 Gh21 Gh22






. (3.9)
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Similarly the pull back of the B-field has components

Bµ4 = −γ hG(h2aga3)∂µφ
3 , (3.10)

Bµ5 = γ hG(h1aga3)∂µφ
3 , (3.11)

B45 = γ hG . (3.12)

The world-volume field strength has both magnetic and electric components

F45 =
1

γ
, Fµ4 = ∂µA1(ζ

ν) , Fµ5 = ∂µA2(ζ
ν) . (3.13)

The magnetic component is required by supersimmetry, while the electric components

correspond to space-time fluctuations of the Wilson lines on the two-torus.

Using the above expressions the determinant in the Born-Infeld action can be written

as

det(G−B+F) = r6
G

γ2

[

1

r2

(

gij∂µyi∂µyj + g33(∂µφ
3)2 − 2γg3a∂µφ

3f̂aµ + γ2habf̂
a
µ f̂

b
µ

)

− r2
]

.

(3.14)

where f̂aµ = ǫab∂µAb = ǫabFµb. The overall factor of G cancels the contribution from the

dilaton so that the BI action for the D5-probe takes the form9

SBI = −N
γ

∫

d4ζr3
√

r2 − 1

r2

(

gij∂µyi∂µyj + g33(∂µφ3)2 − 2γg3a∂µφ3f̂aµ + γ2habf̂aµ f̂
b
µ

)

.

(3.15)

The Wess-Zumino part of the action simplifies as well, since, as noticed in [2], the C6

contribution cancels with B2 ∧C4. The only non trivial contribution is

SWZ = T5

∫

C4 ∧ F45 =
N

γ

∫

dt r4 . (3.16)

The contribution to the potential vanishes for all values of the moduli yi, φ
3, Aa. We

then obtain a six-dimensional family of supersymmetric four-branes.

We want to discuss in detail the existence and the moduli space of such configurations.

First of all, due to charge quantisation, the D5-brane solutions we find exist only for rational

values of γ ≡ m/n, as discussed in details in [2].10 In fact, since the internal T 2 wrapped

by the D5-brane supports a flux F45 = 1/γ, there is an induced D3-charge that has to

be quantized. If we set γ = m/n, with m and n relatively prime integers, we obtain a

consistent configuration by taking a D5-brane wrapped m times on the contractible T 2.11

This configuration can be alternatively seen as a set of n blown up D3-branes.

9SBI and SWZ are proportional to T5L
4α′V ol(T 2) = π2N/(2V ol(X5)). Not to clutter formulae we will

only write a factor of N .
10In [2] to see this they check that a configuration of (ND3, ND5, NNS5) in the undeformed geometry

is mapped to (ND3, ND5 + γND3, NNS5) by the Lunin-Maldacena transformation. Hence γ = m/n and

ND3 = N must be a multiple of n.
11In the case m = 1 we can equivalently impose that the first Chern number for the U(1) gauge bundle

is integer: 1
2π

R

T2 F = n, which gives γ = 1/n.
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Our solutions should correspond to additional branches of the dual gauge theory which

exist only for rational β. These are well known for N = 4 SYM [5, 6] and are discussed

in [19] for the conifold. For a generic β-deformed quiver gauge theory we can study the

geometry of these new branches by looking at the moduli space of the solutions. For

simplicity consider the case ND5 = m = 1. The moduli space of the brane is parameterised

by {φ3, Ãa, yi}. φ3 and yi, (i = 1, 2, 3) are four scalars deformations corresponding to

transverse movements of the D5-brane in the internal geometry. Then we have two Wilson

lines in the internal T 2, corresponding to the deformations of the gauge field on the brane:

ei
R

a
A. Here A = A/(2π) such that F = dA, F = dA and the integral is over the two

non trivial one cycles on T 2. Notice that before T-duality the Wilson lines correspond to

the position of the D3-brane on T 2. Naively the space of the deformations of the gauge

field is given by the first cohomology of T 2, which is parametrized by the gauge invariants

Ãa =
∫

aA, but since the holonomies, exp(iÃa), are the only physical observables, it is

clear that they have compact range: 0 ≤ Ãa ≤ 2π.

The metric for the moduli space can be read from the DBI action, when we give a

space-time dependence to all moduli. We can then interpret the electric field strengths as

the space-time derivatives of the Wilson lines: Fµa = ∂µAa = 2π∂µAa ≃ ∂µ
∫

aA = ∂µÃa.

By expanding (3.15) we obtain the metric on the moduli space

SD5 =
N

2γ

∫

d4ζ
(

gi j∂µyi∂µyj + g3 3(∂µφ
3)2 − 2γg3 a∂µφ

3f̂aµ + γ2ha bf̂
a
µ f̂

b
µ

)

. (3.17)

This metric is identical to the metric of the original Calabi-Yau when we identify

∂µφ
a = −γf̂aµ , or φa ≡ −γǫabÃb . (3.18)

As discussed above, for m = 1 the angular variable φa associated to the Wilson lines has

period 2π/n. We thus see that the metric on the moduli space is just that of the original

CY divided by Zn × Zn.

Therefore the prediction from the gravity analysis is that, for every toric quiver gauge

theory, at rational β, we have additional Higgs branches isomorphic to the orbifold CY/Zn×
Zn. We will give evidence for this statement in section 6.

3.2 Dual giant gravitons

We are interested in this section in dual giant gravitons, brane probes wrapping a three-

sphere in global AdS5 and spinning in the internal manifold. Dual giants are defined in

global coordinates in AdS5.

As shown in [17], the classical phase space of a supersymmetric D3 dual giant on the

undeformed Sasaki-Einstein background is isomorphic to the original Calabi-Yau, that is

the abelian moduli space of the dual gauge theory. Upon geometric quantisation of the

classical solutions one obtains all the mesonic BPS states of the theory.12

In this section we will extend this discussion and study the dynamics of the dual giant

gravitons in the β-deformed geometries. Since the quantisation of the classical dual giant

12By quantising the classical dual giant solutions we obtain states of the gauge theory on S3 × R [24].

All these states are mapped to BPS operators via the conformal mapping to R
4.
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solutions gives mesonic BPS states (corresponding to BPS operators), we expect that the

classical phase space of the dual giants contains information about the mesonic moduli

space of the dual gauge theory. Dual giants for the β-deformed N = 4 SYM were already

analysed in [25].

Exactly in parallel to the case of static probes, the β-deformed geometries admit BPS

dual giant gravitons of two kinds. The first type of giants are present for all values of

the deformation parameter γ and correspond to D3-branes wrapping an S3 in AdS5 and

spinning along the Reeb vector in the internal geometries. On the field theory side they

correspond to the operators parameterising the abelian Coulomb branch of the theory.

The classical phase space of the dual giants reproduces the abelian moduli space of the

dual gauge theory. The other class of dual giants can exists only for rational values of the

deformation parameter and consists of D5-branes wrapping the S3 in AdS5 and the two-

torus (φ1, φ2) in the internal manifold. They rotate in the angular direction orthogonal to

the two-torus and have a magnetic world-volume field strength proportional to 1/γ. The

world-volume gauge field satisfies the quantisation condition only for γ rational. On the

field theory side these configurations correspond to Higgs branches that are present when

β is rational.

3.2.1 D3 dual giant gravitons

We want to study the dynamics of a D3-brane probe that wraps the three-sphere in AdS5,

written in global coordinates, and rotates on the internal manifold. This is still governed

by the brane world-volume action (3.1) where we now take as ten-dimensional metric

ds210 = ds2AdS5
+ ds2X5

. (3.19)

The metric of AdS5 is given in global coordinates

ds2AdS5
= −V (R)dt2 +

1

V (R)
dR2 +R2(dθ2 + cos2 θdα2

1 + sin2 θdα2
2) (3.20)

with V (R) = 1+R2. t is the global time in AdS5 and the angles θ, α1 and α2 parameterise a

round three-sphere. We will write the metric on X5 as the restriction of the six-dimensional

internal metric to the hypersurface with r = 1

2biyi = 1 . (3.21)

From now on, we consider as coordinates for X5 the angles φi and two extra angles param-

eterised by the yi with the above constraint.

With this choice of coordinates the embeddingXM (ζµ) corresponding to the dual giant

graviton can be taken as

t = τ, R = R(τ), θ = ζ1, α1 = ζ2, α2 = ζ3 ,

φi = φi(τ), yi = yi(τ) i = 1, . . . , 3 . (3.22)

It is then easy to see that

√

− detGµν = R3 cos θ sin θ∆1/2 , (3.23)
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where we have defined (the dot represents the derivative with respect to t = τ)

∆ = V (R) − Ṙ2

V (R)
− gij ẏiẏj − g̃ij φ̇

iφ̇j . (3.24)

To evaluate the WZ term we can choose the pull back of the four-form potential to be

C(4) = R4 sin θ cos θdτ ∧ dθ ∧ dα1 ∧ dα2 . (3.25)

Substituting (3.23) and (3.25) into (3.1) we obtain the Lagrangian for the probe13

L = −NR3(e−Φ
√

∆ −R) . (3.26)

To find the explicit solutions for the possible motions of the D3-brane probe it is

convenient to pass to the Hamiltonian formalism and solve the Hamilton equations of

motion. For the dual giant graviton we are considering the canonical momenta are

pR =
∂L
∂Ṙ

= e−ΦNR
3

√
∆

Ṙ

V
,

pyi
=

∂L
∂ẏi

= e−ΦNR
3

√
∆
gij ẏj , (3.27)

pφi =
∂L
∂φ̇i

= e−ΦNR
3

√
∆
g̃ij φ̇j .

The Hamiltonian then reads

H = e−ΦNR
3

√
∆
V −NR4

= NR3(
√
V Ω −R) , (3.28)

where in the second line we have expressed everything in terms of the canonical momenta

and we have introduced the function

Ω = e−2Φ +
1

N2R6
(V p2

R + gijpyi
pyj

+ g̃ijpφipφj) . (3.29)

The corresponding equations of motion are

Ṙ =
1 +R2

NR2x
pR , (3.30)

ṗR = NR3

[

4 − 1

x

(

x2 + 3e−2Φ +
(pR)2

N2R4

)]

, (3.31)

ẏi =
1

NR2x
gijpyj

, (3.32)

ṗyi
= −NR

4

2x
∂yi

Ω , (3.33)

φ̇i =
1

NR2x
g̃ijpφj , (3.34)

ṗφi = 0 , (3.35)

13Keeping into consideration also the factors of L, the Lagrangian for D3 dual giants is proportional to

T3L
4V ol(S3) = π3N/V ol(X5); however we will write explicitly only the factor N in front of L.
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where we have defined

x = R

√

Ω

V
. (3.36)

A BPS solution representing a dual giant rotating in the internal manifold is given by

R = const , pR = 0 , (3.37)

yi = const , pyi
= 0 , (3.38)

φ̇i = bi , pφi = 2NR2yi (3.39)

with yi satisfying Φ(yi) = 0.

To explicitly see it, it is convenient to introduce a set of local angular coordinates

adapted to the motion of the brane probe

ds2X5
= gijdyidyj +H(dψ + σadψ

a)2 + habdψ
adψb , (3.40)

where ψ is the angular direction in which the brane rotates, and the indices a, b run from

1 to 2. As before the functions H and hab depend on the variables yi only. In these

coordinates the function Ω becomes

Ω = e−2Φ +
1

N2R6
(V p2

R + gijpyipyj
+H−1p2

ψ + hab(pψa − σapψ)(pψb − σbpψ)) , (3.41)

while (3.34) and (3.35) are substituted by

ψ̇ =
1

NR2x
(H−1pψ − habσa(pψb

− σbpψ)) , ṗψ = 0 , (3.42)

ψ̇a =
1

NR2x
ha b(pψb − σbpψ) , ṗψa = 0 . (3.43)

Since the brane rotates in the direction ψ we expect

ẏi = 0, ψ̇a = 0, Ṙ = 0 . (3.44)

The first condition, together with (3.32) and (3.33), implies

pyi
= 0 and ∂yi

Ω = 0 . (3.45)

The second condition in (3.44) imposes

pψa = σapψ . (3.46)

And finally the third condition combined with (3.30) and (3.31) gives

pR = 0 and x = 2 ±
√

4 − 3e−2Φ . (3.47)

Observe that the condition ∂yi
Ω = 0 and the definitions of x and Ω altogether imply

∂yi
Φ = 0, ∂yi

H = 0 . (3.48)
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Up to now we have not imposed the condition that the dual giant must be BPS. This

amounts to setting the Hamiltonian equal to the momentum in direction of the rotation

H = pψ . (3.49)

The value of pψ and H on the solution are easily computed from the equations above

H = NR2[x+R2(x− 1)] , (3.50)

pψ =
√
HNR2

√

R2(x2 − e−2Φ) + x2 , (3.51)

so that for the ratio to be equal to 1 for all values of R, one has to impose14

x = 1, Φ = 0, H = 1 , (3.52)

which imply ψ̇ = 1 on the BPS solutions.

We can now analyse the conditions for BPS motion. Let us start with the case of the

undeformed theory. In the undeformed background, Φ is identically zero. A supersymmet-

ric configuration can be obtained by allowing the probe to rotate along the Reeb vector.

In fact the angle ψ dual to Reeb vector is normalized to one

H = g(K,K) = gijb
ibj ≡ 1 , (3.53)

where we made use of equation (2.25) on the Sasaki-Einstein r = 1. Thus the BPS equa-

tions (3.48) and (3.52) are satisfied. This reproduces the results found in [17]: a super-

symmetric dual giant must rotate along the Reeb vector and it can sit at any point in yi.

Its motion in the phase space (qA, pA) is characterized by six free real parameters that are

the initial conditions on the Sasaki-Einstein space plus R. Altogether these parameters

reconstruct a copy of the Calabi-Yau and the induced symplectic form on the phase space

reduces to the natural symplectic form of the Calabi-Yau cone [17].

In the case of the deformed theory, Φ is a non trivial function of yi and the condi-

tions (3.48), (3.52) select a subvariety of the internal space. Since e−Φ =
√

1 + γ2h we can

write the conditions for the vanishing of Φ and ∂yi
Φ as

h = 0 , ∂yi
h = 0 . (3.54)

Here h is the determinant of the two-torus metric which vanishes exactly on the edges of

the polyhedral cone where the torus degenerates. In addition its derivative also vanishes

on the edges as equation (3.5) clearly shows. We see that the BPS condition restricts the

dual giant to live on the d edges of the cone.

We still have to find the angular direction of rotation of a BPS dual giant, which is

characterized by the conditions H = 1, ∂yi
H = 0. We still expect our giant to rotate along

the Reeb vector. We can compute the value of H for a giant rotating along the Reeb vector

H = g(K,K) = G+ 9(1 −G)(g33 − habga3gb3) =
1 + 9γ2 det gij

1 + γ2h
. (3.55)

14There might exist other solutions with fixed value of R. Most likely, an analysis in terms of super-

symmetry transformations would reveal that these solutions are not BPS. They would correspond to truly

isolated vacua in the dual field theory, that are not expected to exist in such theories.
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We can easily check that along an edge where h = ∂yi
h = 0 we have H = 1, ∂yi

H = 0 thus

solving the remaining equations of motion and BPS conditions.

Summarizing, a dual giant graviton in the beta-deformed theory is supersymmetric

only when it lives on the edges of polyhedron and rotates along the Reeb vector.

Adding R to the set of initial conditions of the probe, we see that the moduli space for

a dual giant can be identified with a collection of lines. We expect that the classical phase

space of a single dual giant corresponds to the abelian moduli space of the dual gauge

theory. Indeed what we found is consistent with the results for static probes and the field

theory discussion in section 6.

3.2.2 D5 dual giant gravitons

For γ rational another class of brane probes can be consistently embedded in the deformed

geometry: D5-branes wrapping the same S3 inside AdS5 and the two-torus spanned by

(φ1, φ2) in the internal manifold. The corresponding embedding is

t = τ, R = R(τ), θ = ζ1, α1 = ζ2, α2 = ζ3 ,

φ1 = ζ4, φ2 = ζ5,

φ3 = φ3(τ), yi = yi(τ) i = 1, 2, 3 , (3.56)

where we call (ζ0, . . . , ζ5) the world-volume coordinates on the brane. The discussion is

completely parallel to that for a static D5-brane. The world-volume action for the dual

giant is still given by (3.7) and now the pulled-back metric is given by



















−∆ 0 0 0 Gφ̇3g1 3 Gφ̇
3g2 3

0 R2 0 0 0 0

0 0 R2 cos2 ζ1 0 0 0

0 0 0 R2 sin2 ζ1 0 0

Gφ̇3g1 3 0 0 0 Gh1 1 Gh1 2

Gφ̇3g2 3 0 0 0 Gh2 1 Gh2 2



















(3.57)

with ∆ = V (R) − Ṙ2

V (R) − gi j ẏiẏj + g̃3 3(φ̇
3)2. The B-field is given by

B04 = −γ hG(h2 aga3)φ̇
3 , (3.58)

B05 = γ hG(h1 aga3)φ̇
3 , (3.59)

B45 = γ hG , (3.60)

and the world-volume field strength has both magnetic and electric components

F45 =
1

γ
, F04(τ) , F05(τ) . (3.61)
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It is a straightforward computation to verify that the BI action for the D5 probe has the

same form as for the Calabi-Yau case15

SBI = −N
γ

∫

dtR3

√

V (R) − Ṙ2

V (R)
− gi j ẏiẏj − g3 3(φ̇3)2 + 2γg3 aφ̇3f̂a − γ2ha bf̂af̂ b ,

(3.62)

where f̂a = ǫabF0b. The Wess-Zumino part of the action reduces to the Calabi one as well.

This is because the only non trivial contribution is

SWZ = T5

∫

C4 ∧ F45 =
N

γ

∫

dtR4 . (3.63)

Thus the world-volume Lagrangian is

L = −NR
3

γ
(
√

Σ −R) (3.64)

with

Σ = V (R) − Ṙ2

V (R)
− gi j ẏiẏj − g3 3(φ̇

3)2 + 2γg3 aφ̇
3f̂a − γ2ha bf̂

af̂ b (3.65)

which formally is equivalent to that of a D3 dual giant in the undeformed geometry with

the replacement of φ̇a with −γǫabF0b. On the undeformed Calabi-Yau a D3 dual giant can

live at an arbitrary point and rotates along the Reeb vector. We thus see that a class of

solutions for D5 dual giants is obtained by choosing

F0a =
1

γ
ǫabb

b , φ̇3 = b3 . (3.66)

We can analyse the classical phase space of the D5 dual giants. Exactly as in the case

of static D5, for β = m/n, we obtain the orbifold CY/Zn × Zn. Coordinates on this space

are obtained by adding R to the initial values of φ3, yi and the two Wilson lines along the

two-torus, and taking into account the modified periodicities of the angles. The classical

phase space of the D5 dual giants is thus isomorphic to the additional Higgs branches in

the moduli space of the dual gauge theory existing for rational β. This is consistent with

the fact that the quantisation of this classical phase space (as done for example in [17])

should reproduce the mesonic BPS operators parameterising the Higgs branch.

4. Supersymmetric D-brane probes from β-transformation

In this section we analyse the existence and supersymmetry of D3 and D5 probes using

generalised geometry. We show in particular that the class of dual giants found in section 3.2

can be obtained by direct action of the β-transformation on the word-volume of the D3

dual giants described in [17]. This will automatically ensure that the dual giants are

supersymmetric in the β-deformed background.

15SBI and SWZ are proportional to T5L
4α′V ol(S3)V ol(T 2) = π4N/V ol(X5). Again we write only the

factor N .
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A simple way to do it is again using the formalism of Generalised Geometry, where

a D-brane wrapping a submanifold Σ and supporting a world-volume field strength F

is described by its generalised tangent bundle T(Σ,F) [22]. This can be described as a

maximally isotropic subspace of T ⊕ T ⋆,16 as follows

T(Σ,F) = {X + ξ ∈ T ⊕ T ⋆|Σ : X ∈ TΣ and ξ|Σ = ιXF} . (4.1)

As already mentioned, the elements of T ⊕ T ⋆ transform linearly under the action of the

extended T-duality group O(d, d) and so does T(Σ,F). If we start from a D-brane preserving

a background supersymmetry which is also preserved by the O(d, d) transformation, then

the D-brane obtained by ‘integrating’ the transformed generalised tangent bundle will be

automatically supersymmetric in the transformed background.

Let us start by considering the β-deformation of a static D3-brane in the undeformed

toric Sasaki-Einstein background, filling the four Poincaré directions and sitting at an

arbitrary point of the internal Calabi-Yau cone. As it is well known, this configuration

preserves all the background Poincaré supersymmetries.

If the D3-brane sits at a point where the two-torus (φ1, φ2) shrinks to zero size, the

generalised tangent bundle describing the new D-brane is identical to the one we started

from, since the β-transformation (2.29) reduces to the identity at these points. Thus the

original D3-brane is mapped to a D3-brane at the same degeneration point in the deformed

background.

The situation is different when the original D3-brane sits at a point where φa are non-

degenerate. Since the only coordinates playing a non-trivial role in the β-transformation

are the two angles φa we can simply describe the D3-brane as a point on the two-torus

(φ1, φ2). Since all forms vanish when restricted to a point, the associated (two-dimensional)

generalised tangent bundle (4.1) admits the basis ea = dφa. Acting on this basis with the

β-deformation (2.29), we obtain a basis for the β-transformed generalised tangent bundle

ẽa = −γǫab ∂

∂φb
+ dφa . (4.2)

By projecting it onto the background tangent bundle, we see that the ordinary tangent

bundle of the new D-brane is spanned by ∂φ1 and ∂φ2 . Thus, we obtain a D5-brane wrapping

(φ1, φ2) in the β-deformed background. From the general definition (4.1), we also see that

the D5-brane must support a world-volume gauge field F = (1/γ)dφ1 ∧ dφ2.

We can easily check this result using the supersymmetry conditions for D-branes given

in terms of the (twisted) background pure-spinors [14, 15]. For a D-brane wrapping the

internal cycle Σ with world-volume flux F is

[Ψ̂−|Σ ∧ eF]top−1 = 0 , [(ιXΨ̂−)|Σ ∧ eF]top = 0 ∀X ∈ TM (F-flatness) (4.3)

[Ψ̂+|Σ ∧ eF]top = 0 . (D-flatness) (4.4)

In our case Ψ̂− = eβ · (e−3AΩ(0)) and Ψ̂+ = eβ · exp(−ie−2AJ (0)). Then, we immedi-

ately see that a D3-brane is supersymmetric only where β → 0 (i.e. the points where the

16Strictly speaking we should consider the extension of T by T ⋆; for our class of backgrounds the two are

isomorphic since B is globally defined.
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(φ1, φ2) two-torus degenerates), since at the other points the F-flatness is not satisfied. On

the other hand, a D5-brane wrapping the (φ1, φ2) two-torus at any non-degenerate point

automatically satisfies the D-flatness, since J (0)|T 2 = 0, while the F-flatness imposes the

condition F = (1/γ)dφ1 ∧ dφ2. We have thus recovered the result obtained from T-duality,

generalising the result obtained by other means in [2] for AdS5 × S5.

Let us now pass to the description of the action of the β-transformation on the D3

dual giant gravitons. D3 dual giants in the undeformed background have been found

and discussed in [17]. In any toric Sasaki-Einstein background, they wrap a static S3 of

arbitrary radius at the center of AdS5, sit at any point described by the yi coordinates

(constrained by the condition 2biyi = 1) and run along the angular coordinates as follows

t = τ , φi = biτ + const . (4.5)

As for the case above, if a D3 dual giant sits at a point in the yi coordinates where the

two-torus described by (φ1, φ2) degenerates, its β-transformation is trivial and gives again

a D3 described by the same embedding (4.5). These are nothing but the D3-brane dual

giants described in Subsection 3.2.1, which are thus supersymmetric.

In order to study the β-transformation of D3 dual giants sitting at non-degeneration

points, we can restrict our attention on the time t and the three angles φi. From (4.1) we

see that a basis for the generalised tangent bundle of these D3 dual giants is given by the

tangent vectors and a basis of one forms vanishing along the trajectory

e0 =
∂

∂τ
=

∂

∂t
+ bi

∂

∂φi
, e3 = dt− gijb

jdφi , eα = c(α)idφ
i , (4.6)

where α = 1, 2, i, j = 1, 2, 3 and c(α)i are such that c(α)ib
i = 0. By β-transforming it

ẽ0 =
∂

∂t
+ bi

∂

∂φi
, ẽ3 = γǫabgajb

j ∂

∂φb
+ dt− gijb

jdφi ,

ẽα = γǫabc(α)b
∂

∂φa
+ c(α)idφ

i . (4.7)

Projecting this basis to the background tangent bundle we obtain a basis for the tangent

bundle to the β-transformed brane, which is thus a D5-brane described by the embedding

(τ, σa) 7→ (t = τ , φ3 = b3τ + const , φa = σa) . (4.8)

As above, from the ‘twisting’ of the basis (4.7) we see that the D5-brane must support a

non-trivial world-volume field strength, which can be easily calculated to be

F =
1

γ

(

ǫabb
bdτ ∧ dφa + dφ1 ∧ dφ2

)

=
1

2γ
ǫab

(

− badτ + dφa
)

∧
(

− bbdτ + dφb
)

. (4.9)

We have thus recovered the D5 dual giants described in Subsection 3.2.2. Again, they are

automatically supersymmetric by O(2, 2) symmetry. As already discussed in section 3.1,

the gauge field must be quantised, giving the condition γ = m/n rational.

In sections 3.1 and 3.2.2 we showed that the moduli space of D5-brane probes (static

or dual giants) is given by CY/Zn×Zn. Here we will briefly show that the same result can
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be obtained as the β-deformation of the moduli space of a probe D3 in the undeformed

geometry.

For simplicity, consider a static D3-brane in an undeformed Sasaki-Einstein background

(the analysis of dual giants is completely analogous). As explained in [15], the infinitesimal

deformations of a D-brane wrapping a cycle Σ with field strength F are described by

sections of the generalised normal bundle: N(Σ,F) = E|Σ/T(Σ,F) ≃ T ⋆(Σ,F). In the case of the

static D3-brane, focusing again on the (φ1, φ2) directions, a basis for the sections of N(Σ,F)

is given by the following representatives

ea =
∂

∂φa
, (4.10)

which clearly generate the motion of the D3-brane in the (φ1, φ2) directions. We can now

apply the β-transformation (2.29) to obtain representatives of the corresponding sections

of the generalised normal bundle to the D5-brane in the β-deformed background. The are

given by

ẽa =
1

γ
ǫbadφ

b . (4.11)

The displacement

φa → φa + ca (4.12)

of the D3-brane in the Sasaki-Einstein background is generated by the generalized nor-

mal vector caea. The β-transformation maps it into caẽa, which corresponds, as discussed

in [15], to a shift ∆A = caẽa of the gauge field on the D5-brane in the β-deformed back-

ground. In components this reads

Aa → Aa +
1

γ
ǫabc

b = Aa + nǫabc
b (4.13)

Thus, in particular, a periodic shift ∆aφ
b = 2πδba of the D3-brane corresponds to a

shift

∆a

∫

b
A = 2πnǫba (4.14)

of the Wilson line on the D5-brane. As before the Wilson lines are defined by
∫

aA, with

A = A/2π, have period 2π and parameterise a two-torus T̃ 2.

This result have a natural interpretation taking into account that the β-deformation

maps n D3-branes to a single D5-brane. From this point of view, the angular positions φa

in the undeformed background actually corresponds to the average 〈φa〉 =
∑n

r=1 φ
a
(r)/n of

the angular positions φa(r), r = 1, . . . , n, of the n D3-branes, while the Wilson lines on the

D5-brane in the β-deformed background are associated to the sums
∑n

r=1 φ
a
(r) (the trace of

the corresponding n×n matrix in the complete non-abelian description of the n D3-branes)

by the β-deformation. A constant periodic shift ∆a〈φb〉 = 2πδba of the average D3-brane

position then produces the shift (4.14) of the D5-brane Wilson lines. From (4.14), we see
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that going once around a 1-cycle in T 2
SE corresponds to going n-times around a 1-cycle in

T̃ 2

T̃ 2 ≃ T 2
SE/(Zn × Zn) . (4.15)

We can conclude that the moduli space of the static D5-branes in the β-deformed back-

ground corresponds to the quotient CY/(Zn×Zn) of the CY cone of the undeformed theory.

The same arguments presented above can be applied to the case of D5 dual giants in the

β-deformed background and lead to the expected conclusion that their moduli space again

corresponds to CY/(Zn × Zn).

However, until now we have given only a one-to-one map between the coordinates on

the moduli space and the coordinates on CY/(Zn × Zn). To complete the identification

we still have to compute the metric on the moduli space and see that it coincides with the

metric of CY/(Zn × Zn).

Consider the moduli space of a static supersymmetric D5-brane described above. Its

tangent vectors correspond to the fluctuations in the internal space that preserve the su-

persymmetry condition and can thus be seen as massless chiral fields in an effective four-

dimensional description. The Kähler metric for these chiral fields can be in principle

obtained by looking at their kinetic term obtained by expanding the DBI+CS action for

the D5-brane. This is exactly the metric we are interested in.

We can apply the results of [15, 16] to identify the Kähler structure of the moduli

space. To find the correct holomorphic parametrization of the D5 massless fluctuations we

can use once again the action of the β-deformation. The fluctuation of a general D-brane

are given by the sections of the generalised normal bundle N(Σ,F) [15]. For a D3-brane

in a Sasaki-Einstein background, the moduli space corresponds to the CY cone M itself,

N(Σ,F) ≡ TM and the associated complex structure is nothing but the complex structure

of the CY. Now, a basis for the holomorphic tangent space to the moduli space is given by

the following sections of the generalised normal bundle

ei =
∂

∂zi
, (4.16)

where zi are the holomorphic coordinates on the CY. A basis for the holomorphic defor-

mations for the corresponding D5-brane in the β-deformed background can be obtained

simply by taking the β-transformation of the basis (4.16)

ẽi = OLM · ei . (4.17)

We can now use the general formula for the Kähler metric given in [15, 16], which was

in fact obtained by expanding the DBI+CS D-brane action. In the basis (4.17) it is given

by

Gī = −i
∫

Σ
[ẽi · ¯̃ē · Im(e2AΨ̂+)]|Σ ∧ eF

= −i
∫

Σ

{

e2Aeβ · ιei
ιē̄Im

[

exp(−ie−2AJ(0))
]}

|Σ ∧ eF

= −iJ (0)
ī

∫

Σ
F = −i(2π)2nJ

(0)
ī , (4.18)

– 28 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
3

where J (0) is Kähler form on the CY cone. We thus see that we obtain (locally) exactly

the CY metric, up to an overall factor which comes from the fact that the D5-brane with

n units of F flux corresponds to n D3-branes in the undeformed SE background. From the

coordinate identification discussed above, we can conclude that the Kähler moduli space

for the D5-brane is indeed CY/(Zn × Zn).

5. Comments on giant gravitons

There exist other BPS string configurations. Of particular interest are the giant gravitons,

configurations of D3-brane wrapping 3 cycles in the internal space. It would be quite

interesting to perform a complete analysis of the spectrum of giant gravitons on the β-

deformed background. As shown in [26 – 31], in the undeformed case, the quantisation of

the classical supersymmetric giant graviton solutions gives a complete information about

the spectrum and the partition function of BPS mesonic operators in the field theory.

In the Calabi-Yau case, giant gravitons can be parameterised by Euclidean D3-branes

living inside the internal six-manifold [32, 26]. We restrict to the minimal giant gravitons

without world-volume flux, which parametrize all the bosonic BPS states. The argument

given in [26] suggests that the same parameterisation can be used in all solutions with AdS5

factor. The supersymmetric conditions for Euclidean D-branes on a generalised geometry

background have been derived in [33] and shown to be identical to the conditions for the

internal part of space-filling branes discussed in [14, 15],17 that we have already written

in (4.3) and (4.4). So they can be easily applied to an Euclidean D3-brane, given the form

of the pure spinors discussed in section 2.3.

The F-flatness condition (4.3) for Euclidean D3-brane wrapping Σ with F = 0 reduces

to

Ω(0)|Σ = 0 , (5.1)

where we recall that Ω(0) is the holomorphic (3, 0) on the original CY geometry. The

condition (5.1) exactly requires that the 4-cycle wrapped by the Euclidean D3-brane must

be holomorphic with respect to the CY complex structure. Consider for example four-

cycles in β-deformed toric vacua defined by the embedding w3 = g(z1, z2, z̄1, z̄2), where

z1,2, z̄1,2 are chosen as coordinates on the cycle. Then the F-flatness (5.1) becomes

dz1 ∧ dz2 ∧ dg = 0 ⇔ ∂̄g = 0 , (5.2)

which indeed requires that the embedding is holomorphic with respect to the old variables.

Of course, other supersymmetric embeddings might exist which are not parameterised by

z1,2.

On the other hand, the general D-flatness condition is (4.4) in the β-deformed toric-

vacua, for the above four-cycles with F = 0, becomes

ιβ(J ∧ J ∧ J)|Σ ∼ dx1 ∧ dx2 ∧ dg ∧ dḡ = 0 ⇔ Im(∂1g ∂̄2̄ḡ) = 0 . (5.3)

17Indeed, the results of this section can be equally used to identify and study flavor D7-branes on this

general class of β-deformed backgrounds (see [34, 35] for work in this direction).
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Interestingly, all the supersymmetric conditions can be written in terms of the original

complex coordinates of the Calabi-Yau. This is in agreement with field theory, where

the moduli space for the deformed theory remains a complex manifold and the original

complex structure of the moduli space can be still used to characterize it. We can easily

find many solutions of the F and D-flatness conditions. For example, all monomials of

definite charge w3 = en1z1en2z2 solve the constraints. At first sight, we are left with more

solutions than expected from the spectrum of BPS states of the deformed theory. However

a more careful analysis of the giant graviton characterization as Euclidean D3-branes, of

their global properties, of their world-volume flux and, in general, of the quantisation

procedure should be performed before extracting correct results. We leave this interesting

analysis for future work.

6. The gauge theory

In this section we discuss the moduli space for a β-deformed quiver gauge theory. Rather

than giving general proofs for all toric quiver theories we examine various examples and

we give some general arguments.

6.1 Non abelian BPS conditions

In order to understand the full mesonic moduli space of the gauge theory we need to study

general non-abelian solutions of the F term equations.

Before attacking the general construction, we consider N = 4 SYM and the conifold.

In the N = 4 SYM case, we form mesons out of the three adjoint fields (Φi)
β
α. The non-

abelian BPS conditions for these mesonic fields are given in equation (2.9) and can be

considered as equations for three N ×N matrices. In the conifold case, we can define four

composite mesonic fields which transform in the adjoint representation of one of the two

gauge groups

x = (A1B1)
β
α, y = (A2B2)

β
α, z = (A1B2)

β
α, w = (A2B1)

β
α (6.1)

and consider the four mesons x, y, z, w as N × N matrices. We could use the second

gauge group without changing the results. With a simple computation using the F-term

conditions (2.10) we derive the following matrix commutation equations

xz = b−1zx xw = bwx yz = bzy

yw = b−1wy xy = yx zw = wz
(6.2)

and the matrix equation

xy = bwz (6.3)

which is just the conifold equation. Here and in the following b = e−2iπβ. For β = 0

these conditions simplify. All the mesons commute and the N × N matrices x, y, z, w

can be simultaneous diagonalized. The eigenvalues are required to satisfy the conifold

equation (6.3) and therefore the moduli space is given by the symmetrized product of N

copies of the conifold, as expected.
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An interesting observation is that, for the N = 4 SYM and (6.2) for the conifold,

the F-term conditions for β 6= 0 can be obtained by using the non commutative product

defined in (2.5)

f ∗ g ≡ eiπβ(Qf∧Qg)fg . (6.4)

The charges of mesons for N = 4 and the conifold are shown in figure 2.

The BPS conditions for the Calabi-Yau case, which require that every pair of mesonic

fields f and g commute, are replaced in the β-deformed theory by a non commutative

version

[f, g] = 0 → [f, g]β ≡ f ∗ g − g ∗ f = 0 . (6.5)

It is an easy exercise, using the assignment of charges shown in figure 2, to show that these

modified commutation relations reproduce equations (2.9) and (6.2).

This simple structure extends to a generic toric gauge theory. The algebraic equations

of the Calabi-Yau give a set of matrix equations for mesons. In the undeformed theory, all

mesons commute, while in the β-deformed theory the original commutation properties are

replaced by their non commutative version. In order to fully appreciate these statements

we need to understand the structure of the mesonic chiral ring for toric theories [36 – 42].

6.1.1 The mesonic chiral ring

We briefly review the structure of the mesonic chiral ring for quiver gauge theories. The

reader is referred to [36 – 42] for an exhaustive discussion. The reader who wants to avoid

technical details can directly jump to the next sections, where most of the examples are

self-explaining.

From the algebraic-geometric point of view the data of a conical toric Calabi-Yau are

encoded in a rational polyedral cone C in Z
3 defined by a set of vectors Vα α = 1, . . . , d. For

a CY cone, using an SL(3,Z) transformation, it is always possible to carry these vectors

in the form Vα = (xα, yα, 1). In this way the toric diagram can be drawn in the x, y

plane (see for example figure 2). The CY equations can be reconstructed from this set of

combinatorial data using the dual cone C∗. This is defined in equation (2.14) and it was

already used to write the metric as a T 3 fibration. The two cones are related as follow.

The geometric generators for the cone C∗, which are vectors aligned along the edges of C∗,

are the perpendicular vectors to the facets of C.

To give an algebraic-geometric description of the CY, we need to consider the cone C∗

as a semi-group and to find its generators over the integer numbers. The primitive vectors

pointing along the edges generate the cone over the real numbers but we generically need

to add other vectors to obtain a basis over the integers. Denote by Wj with j = 1, . . . , k

a set of generators of C∗ over the integers. To every vector Wj it is possible to associate

a coordinate xj in some ambient space. k vectors in Z
3 are clearly linearly dependent

for k > 3, and the additive relations satisfied by the generators Wj translate into a set

of multiplicative relations among the coordinates xj . These are the algebraic equations

defining the six-dimensional CY cone.

All the relations between points in the dual cone become relations among mesons in

the field theory. In fact, using toric geometry and dimer technology, it is possible to show
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(b)
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3
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(0,−1,1)

(0,0,1)(−1,0,1)

(0,−1,0)

(−1,0,0)

(1,1,1)
(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

(−1,0,1)

(0,−1,1)

(0,1,0)

(1,0,0)

z

y

w

x

(a)

Figure 2: The toric diagram C and the generators of the dual cone C∗ with the associated mesonic

fields for: (a) N = 4, (b) conifold. The U(1)3 charges of the mesons are explicitly indicated; the first

two entries of the charge vectors give the U(1)2 global charge used to define the non commutative

product.

that there exists a one to one correspondence between the integer points inside C∗ and the

mesonic operators in the dual field theory, modulo F-term constraints [37, 40]. To every

integer point mj in C∗ we indeed associate a meson Mmj
in the gauge theory with U(1)3

charge mj . In particular, the mesons are uniquely determined by their charge under U(1)3.

The first two coordinates

Qmj = (m1
j ,m

2
j ) (6.6)

of the vector mj are the charges of the meson under the two flavour U(1) symmetries.

Since the cone C∗ is generated as a semi-group by the vectors Wj the generic meson will

be obtained as a product of basic mesons MWj
, and we can restrict to these generators for

all our purposes. The multiplicative relations satisfied by the coordinates xj become a set

of multiplicative relations among the mesonic operators MWj
inside the chiral ring of the

gauge theory. It is possible to prove that these relations are a consequence of the F-term

constraints of the gauge theory. The abelian version of this set of relations is just the set

of algebraic equations defining the CY variety as embedded in C
k. The examples of N = 4

SYM and the conifold are shown in figure 2. In the case of N = 4 , the three mesons Φj

correspond to independent charge vectors and we obtain the variety C
3. In the case of the

conifold, the four mesons x, y, z, w correspond to four vectors with one linear relation and

we obtain the description of the conifold as a quadric xy = zw in C
4.

We need now to understand the non abelian structure of the BPS conditions. Mesons

correspond to closed loops in the quiver and, as shown in [36, 38], for any meson there

is an F-term equivalent meson that passes for a given gauge group. We can therefore

assume that all meson loops have a base point at a specific gauge group and consider

them as N × N matrices Mβ
α. In the undeformed theory, the F-term equations imply

that all mesons commute and can be simultaneously diagonalized. The additional F-

term constraints require that the mesons, and therefore all their eigenvalues, satisfy the
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algebraic equations defining the Calabi-Yau. This gives a moduli space which is the N -fold

symmetrized product of the Calabi-Yau. This has been explicitly verified in [43] for the

case of the quiver theories [44] corresponding to the Lpqr manifolds. In the β-deformed

theory the commutation relations among mesons are replaced by β-deformed commutators

Mm1Mm2 = e−2iπβ(Qm1∧Qm2 )Mm2Mm1 = b(Q
m1∧Qm2)Mm2Mm1 . (6.7)

The prescription (6.7) will be our short-cut for computing the relevant quantities we will

be interested in. This fact becomes computationally relevant in the generic toric case. As

we will show in an explicit example in the appendix B this procedure is equivalent to using

the β-deformed superpotential defined in (2.8) and deriving the constraints for the mesonic

fields from the F-term relations.

Finally the mesons still satisfy a certain number of algebraic equations

f(M) = 0 (6.8)

which are isomorphic to the defining equations of the original Calabi-Yau.

6.2 Abelian moduli space

In this section, we give evidence from the gauge theory side that the abelian moduli space

of the β-deformed theories is a set of lines. There are exactly d such lines, where d is the

number of vertices in the toric diagram. In fact, the lines correspond to the geometric

generators of the dual cone of the undeformed geometry, or, in other words, the edges of

the polyedron C∗ where the T 3 fibration degenerates to T 1. Internal generators of C∗ as a

semi-group do not correspond to additional lines in the moduli space. These statements

are the field theory counterpart of the fact that the D3 probes can move only along the

edges of the symplectic cone.

We explained in the previous section how to obtain a set of modified commutation

relations among mesonic fields. In the abelian case the mesons reduce to commuting c-

numbers. From the relations (6.7) with non a trivial b factor, we obtain the constraint

Mm1Mm2 = 0 . (6.9)

Adding the algebraic constraints (6.8) defining the CY, we obtain the full set of constraints

for the abelian mesonic moduli space.

We now solve the constraints in a selected set of examples, which are general enough

to exemplify the result. We analyse N = 4, the conifold, the Suspended Pinch Point

(SPP ) singularity and a more sophisticated example, PdP4, which covers the case where

the generators of C∗ as a semi-group are more than the geometric generators.

6.2.1 The case of C
3

The N = 4 theory is simple and was already discussed in section 2.1. The three lines

correspond to the geometric generators of the dual cone as in figure 2.
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w

y

z

3 2

Figure 3: The toric diagram and the quiver of the SPP singularity

6.2.2 The conifold

The abelian mesonic moduli space of the conifold theory was already discussed in section 2.1

using elementary fields. From the equations (6.2) we obtain the same result: four lines

corresponding to the external generators of the dual cone as shown in figure 2.

6.2.3 SPP

The gauge theory obtained as the near horizon limit of a stack of D3-branes at the tip of

the conical singularity

xy2 = wz (6.10)

is called the SPP gauge theory [45]. The toric diagram and the quiver of this theory are

given in figure 3. Its superpotential is

W = X21X12X23X32 +X13X31X11 −X32X23X31X13 −X12X21X11 (6.11)

The generators of the mesonic chiral ring are

w = X13X32X21 , x = X11 ,

z = X12X23X31 , y = X12X21 . (6.12)

These mesons correspond to the generators of the dual cone in figure 3. Their flavour

charges can be read from the dual toric diagram

Qx = (1, 0) , Qz = (−1,−1) , Qy = (−1, 0) , Qw = (0, 1) . (6.13)

Using the deformed commutation rule for mesons (6.7) we obtain the following relations

xw = bwx , zx = bxz , wz = bzw ,

wy = byw , yz = bzy . (6.14)

In the abelian case they reduce to

xw = 0 , zx = 0 , wz = 0 ,

wy = 0 , yz = 0 , xy2 ∼ wz , (6.15)
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Figure 4: The toric diagram and the quiver of the PdP4 singularity

where the last equation is the additional F-term constraint giving the original CY manifold.

The presence of the symbol “∼” is due to the fact that the original CY equation is deformed

by an unimportant power of the deformation parameter b, which can always be reabsorbed

by rescaling the variables. The solutions to these equations are

(x = 0 , y = 0 , z = 0) → {w} ,
(x = 0 , y = 0 , w = 0) → {z} ,
(x = 0 , z = 0 , w = 0) → {y} ,
(w = 0 , y = 0 , z = 0) → {x} , (6.16)

corresponding to the four complex lines associated to the four generators of the dual cone.

6.2.4 PdP4

This is probably the simplest example with internal generators: the perpendicular to the

toric diagram are enough to generate the dual cone on the real numbers but other inter-

nal vectors are needed to generate the cone on the integer numbers. The discussion in

section 3.2 suggests that the moduli space seen by the dual giant gravitons and hence the

abelian mesonic moduli space of the gauge theory are exhausted by the external generators.

We will see evidence of this fact.

The PdP4 gauge theory, [46], is the theory obtained as the near horizon limit of a stack

of D3-branes at the tip of the non complete intersection singularity defined by the set of

equations

z1z3 = z2t , z2z4 = z3t , z3z5 = z4t

z2z5 = t2 , z1z4 = t2 . (6.17)

The toric diagram and the quiver of the theory are given in figure 4. The superpotential

of the theory is

W = X61X17X74X46 +X21X13X35X52 +X27X73X36X62 +X14X45X51

−X51X17X73X35 −X21X14X46X62 −X27X74X45X52 −X13X36X61 . (6.18)
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The generators of the mesonic chiral ring are

z1 = X51X13X35 , z2 = X51X17X74X45 , z3 = X21X17X74X45X52 ,

z4 = X14X45X52X21 , z5 = X14X46X61 , t = X13X36X61 . (6.19)

From the toric diagram we can easily read the charges of the mesonic generators

Qz1 = (0, 1) , Qz2 = (−1, 0) , Qz3 = (−1,−1) , Qz4 = (0,−1) , Qz5 = (1, 0) . (6.20)

To generate the cone on the integers we need to add the internal generator t = (0, 0, 1)

with flavour charges Qt = (0, 0). The generators satisfy the equations (6.17) for the PdP4

singularity modified just by some irrelevant proportional factors given by powers of b. We

must add the relations obtained from the mesonic β-deformed commutation rule (6.7)

z1z2 = bz2z1 , z1z3 = bz3z1 , z5z1 = bz1z5 , z2z3 = bz3z2

z2z4 = bz4z2 , z3z4 = bz4z3 , z3z5 = bz5z3 , z4z5 = bz5z4 , (6.21)

that in the abelian case reduce to

z1z2 = 0 , z1z3 = 0 , z5z1 = 0 , z2z3 = 0 ,

z2z4 = 0 , z3z4 = 0 , z3z5 = 0 , z4z5 = 0 . (6.22)

The solutions to the set of equations (6.17) and (6.22) are

(z2 = 0 , z3 = 0 , z4 = 0 , z5 = 0 , t = 0) → {z1} ,
(z1 = 0 , z3 = 0 , z4 = 0 , z5 = 0 , t = 0) → {z2} ,
(z1 = 0 , z2 = 0 , z4 = 0 , z5 = 0 , t = 0) → {z3} ,
(z1 = 0 , z2 = 0 , z3 = 0 , z5 = 0 , t = 0) → {z4} ,
(z1 = 0 , z2 = 0 , z3 = 0 , z4 = 0 , t = 0) → {z5} , (6.23)

corresponding to the five external generators. We observe in particular that the complex

line corresponding to the internal generators t is not a solution.

6.3 Non abelian moduli space and rational β

The F-term equations

Mm1Mm2 = e−2πiβ(Qm1∧Qm2)Mm2Mm1 (6.24)

give a non commutative ’t Hooft-Weyl algebra for theN×N matrices MI . By diagonalizing

the matrix θm1m2 = (Qm1∧Qm2) we can reduce the problem to various copies of the algebra

for a non commutative torus

M1M2 = e2πiθM2M1 (6.25)

whose representations are well known.

For generic β, corresponding to irrational values of θ, the ’t Hooft-Weyl algebra has

no non trivial finite dimensional representations: we can only find solutions where all the

– 36 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
3

matrices are diagonal, and in particular equation (6.25) implies M1M2 = M2M1 = 0.

The problem is thus reduced to the abelian one and the moduli space is obtained by

symmetrizing N copies of the abelian moduli space, which consists of d lines. This is the

remaining of the original Coulomb branch of the undeformed theory.

For rational β = m/n, instead, new branches are opening up in the moduli space [5, 6].

In fact, for rational β, we can have finite dimensional representations of the ’t Hooft-Weyl

algebra which are given by n×n matrices (OI)ij . The explicit form of the matrices (OI)ij
can be found in [47] but it is not of particular relevance for us. For gauge groups SU(N)

with N = nM we can have vacua where the mesons have the form

(MI)
β
α = Diag(Ma) ⊗ (OI)ij , a = 1, . . . ,M, i, j = 1, . . . , n, α, β = 1 . . . N . (6.26)

The M variables Ma are further constrained by the algebraic equations (6.8) and are due

to identifications by the action of the gauge group. A convenient way of parameterising the

moduli space is to look at the algebraic constraints satisfied by the elements of the centre

of the non-commutative algebra [5].

We will give arguments showing that the centre of the algebra of mesonic operators is

the algebraic variety CY/Zn × Zn. Here CY means the original undeformed variety, and

the two Zn factors are abelian discrete sub-groups of the two flavours symmetries. This

statement is the field theory counterpart of the fact that the moduli space of D5 dual giant

gravitons is the original Calabi-Yau divided by Zn × Zn.

The generic vacuum (6.26) corresponds to M D5 dual giants moving on the geometry.

The resulting branch of the moduli space is the M -fold symmetrized product of the original

Calabi-Yau divided by Zn × Zn. Each D5 dual giant should be considered as a fully non-

abelian solution of the dual gauge theory carrying n color indices so that the total number

of colors is N = nM . We can obtain a different perspective on this branch of our gauge

theory by considering it as the world-volume theory of D3-branes sitting at a discrete

torsion Zn×Zn orbifold of the original singularity [48]. In this picture, the D5 dual giants

correspond to the physical branes surviving the orbifold projection. This perspective has

been discussed in details in the literature for N = 4 SYM [5] and it can be easily extended

to generic toric singularities.

6.3.1 The case of C
3

The case of the β-deformation of N = 4 gauge theory is simple and well known [5].

The generators of the algebra of mesonic operators are the three elementary fields Φ1,

Φ2, Φ3. Equation (2.9) implies that it possible to write the generic element of the algebra

in the ordered form

Φk1,k2,k3 = Φk1
1 Φk2

2 Φk3
3 (6.27)

The centre of the algebra is given by the subset of operators in (6.27) such that:

Φk1,k2,k3 Φ1 = bk3−k2 Φ1 Φk1,k2,k3 = Φ1 Φk1,k2,k3 ,

Φk1,k2,k3 Φ2 = bk1−k3 Φ2 Φk1,k2,k3 = Φ2 Φk1,k2,k3 ,

Φk1,k2,k3 Φ3 = bk2−k1 Φ3 Φk1,k2,k3 = Φ3 Φk1,k2,k3 . (6.28)
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Figure 5: C3 → C3/Zn × Zn in the toric picture, b5 = 1.

Since bn = 1, the center of the algebra is given by the set of Φk1,k2,k3 such that k1 = k2 =

k3 modn.

The generators of the center of the algebra are: Φn,0,0,Φ0,n,0,Φ0,0,n,Φ1,1,1. We call

them x, y,w, z respectively. They satisfy the equation

xyw = zn (6.29)

which defines the variety C
3/Zn×Zn. To see this, take C

3 with coordinate Z1, Z2, Z3, and

consider the action of the group Zn × Zn on C
3

Z1, Z2, Z3 → Z1δ−1 , Z2δξ , Z3ξ−1 (6.30)

with δn = ξn = 1. The basic invariant monomials under this action are x = (Z1)n, y =

(Z2)n, w = (Z3)n, z = Z1Z2Z3 and they clearly satisfy the equation (6.29).

This fact can be represented in a diagrammatic way as in figure 5. This representation

of the rational value β-deformation is valid for every toric CY singularity.

6.4 Conifold

The case of the conifold is a bit more intricate and can be a useful example for the generic

CY toric cone. The generators of the mesonic algebra x, y, z, w satisfy the equations (6.2).

It follows that we can write the generic monomial element of the algebra in the ordered

form

Φk1,k2,k3,k4 = xk1yk2wk3zk4 . (6.31)

The centre of the algebra is given by the subset of the operators (6.31) that satisfy the

equations

Φk1,k2,k3,k4 x = bk4−k3 x Φk1,k2,k3,k4 = x Φk1,k2,k3,k4 ,

Φk1,k2,k3,k4 y = bk3−k4 y Φk1,k2,k3,k4 = y Φk1,k2,k3,k4 ,

Φk1,k2,k3,k4 w = bk1−k2 w Φk1,k2,k3,k4 = w Φk1,k2,k3,k4 ,

Φk1,k2,k3,k4 z = bk2−k1 z Φk1,k2,k3,k4 = z Φk1,k2,k3,k4 . (6.32)

Because bn = 1, the elements of the centre of the algebra are the subset of the operators

of the form (6.31) such that k1 = k2, k3 = k4, mod n.
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Figure 6: C(T 1,1) → C(T 1,1)/Zn × Zn in the toric picture, b5 = 1

The centre is generated by Φn,0,0,0,Φ0,n,0,0,Φ0,0,n,0,Φ0,0,0,n,Φ1,1,0,0,Φ0,0,1,1; we call

them respectively A,B,C,D,E,G. The F-term relation

xy = bwz (6.33)

then implies that E and G are not independent: E = bG. Moreover the generators of the

centre of the algebra satisfy the equations

AB = CD = En . (6.34)

As in the previous example, it is easy to see that these are the equations of the Zn×Zn

orbifold of the conifold. Take indeed the coordinates x, y,w, z defining the conifold as a

quadric embedded in C
4. The action of Zn × Zn is

x, y,w, z → xδ , yδ−1 , wξ−1, zξ , (6.35)

where δn = ξn = 1. The basic invariants of this action are A,B,C,D,E,G, and they are

subject to the constraint (6.33). Hence the equations (6.34) define the variety C(T 1,1)/Zn×
Zn.

6.5 The general case

Now we want to analyse the generic case and show that the centre of the mesonic algebra

for the rational β-deformed (bn = 1) gauge theory is the Zn×Zn quotient of the undeformed

CY.

For a generic toric quiver gauge theory we take a set of basic mesons MWj
(we will call

them simply xj from now on) corresponding to the generators Wj of the cone C∗. These are

the generators of the mesonic chiral ring of the given gauge theory. Because they satisfy the

relations (6.24) it is always possible to write the generic monomial element of the mesonic

algebra generated by xj in the ordered form

Φp1,...,pk
= xp11 x

p2
2 . . . xpk

k . (6.36)

We are interested in the operators that form the centre of the algebra, or, in other words,

that commute with all the elements of the algebra. To find them it is enough to find all

the operators that commute with all the generators of the algebra, namely x1, . . . , xk. The
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generic operator (6.36) has charge Qp1,...,pk
under the two flavour U(1) symmetries, and

the generators xj have charges Qj . They satisfy the following relations

Φp1,...,pk
xj = xj Φp1,...,pk

bQp1,...,pk
∧Qj . (6.37)

This implies that the centre of the algebra is formed by the set of Φp1,...,pk
such that

Qp1,...,pk
∧Qj = 0 mod n , j = 1, . . . , k . (6.38)

At this point it is important to realize that the Qj contain the two dimensional vectors

perpendicular to the edges of the two dimensional toric diagram. The fact that the toric

diagram is convex implies that the Qj span the T 2 flavour torus. In particular the operator

Φp1,...,pk
must commute (modulo n) with the operators with charges (1, 0) and (0, 1). The

first condition gives all the operators in the algebra that are invariant under the Zn in the

second U(1), while the second gives all the operators invariant under the Zn contained in

the first U(1). All together the set of operators in the centre of the algebra consists of all

operators Φp1,...,pk
invariant under the Zn × Zn discrete subgroup of the T 2.

The monomials made with the free x1, . . . , xk coordinates of C
k that are invariant

under Zn×Zn, form, by definition, the quotient variety C
k/Zn×Zn. The toric variety V is

defined starting from a ring over C
k with relations given by a set of polynomials {q1, . . . , ql}

defined by the toric diagram

C[V ] =
C[x1, . . . , xk]

{q1, . . . , ql}
. (6.39)

Indeed the elements of the centre of the algebra are the monomials made with the xj ,

subject to the relations {q1, . . . , ql}, invariant under Zn×Zn. This fact allows us to conclude

that the centre of the algebra in the case bn = 1 is the quotient of the original CY

Vb =
CY

Zn × Zn
. (6.40)

The β-deformed N = 4 gauge theory and the β-deformed conifold gauge theory are special

cases of this result. In the appendix we will discuss a more sophisticated example, which

includes SPP as a particular case.

7. Conclusions

In this paper we discussed general properties of the β-deformation of toric quiver gauge

theories and of their gravitational duals, which have a very simple characterization in terms

of generalised complex geometry.

We analysed the moduli space of vacua of the β-deformed theory using D-branes probes

and field theory analysis. An important class of supersymmetric probes, the giant gravitons,

has still to be analysed. It would be interesting to study the classical configurations of

giant gravitons in the β-deformed background and their quantisation. This should give

information about the spectrum of BPS operators and, as it happens in the undeformed

theory, it should help in computing partition functions for the chiral ring of the gauge

theory [27 – 31, 40 – 42].
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On the gravity side, we clarified the geometrical structure of the supersymmetric β-

deformed background. The description in terms of pure spinors is remarkably simple. It

would be interesting to see whether this description can be extended to the analysis of

other marginal deformations of superconformal theories. In particular N = 4 SYM and

other quiver gauge theories admit deformations that breaks the U(1)3 symmetry whose

supergravity dual is still elusive. It would be interesting to extend our methods to the

search of these missing solutions.
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Physique Théorique de l’Universités Paris VI et VII, Jussieu, the Galileo Galilei Institute

in Florence and the Newton Institute in Cambridge for hospitality and support during part

of this work. D. F. is supported in part by INFN and the Marie Curie fellowship under

the programme EUROTHEPHY-2007-1. A. Z. is supported in part by INFN and MIUR

under contract 2005-024045-004 and 2005-023102 and by the European Community’s Hu-

man Potential Program MRTN-CT-2004-005104. A.B and M.P. are supported in part by

the RTN contract MRTN-CT-2004-512194 and by ANR grant BLAN05-0079-01. R.M. is

supported in part by RTN contract MRTN-CT-2004-005104 and by ANR grant BLAN06-

3-137168. L. M. is supported by the DFG cluster of excellence “Origin and Structure of

the Universe” and would like to acknowledge the Galileo Galilei Institute for Theoretical

Physics for hospitality and the INFN for partial support.

A. β-deformed N = 4 super Yang-Mills

For the β-deformation of N = 4 SYM it is possible to use the pure spinor formalism to

determine the precise relation between the parameter γ entering the supergravity back-

ground and the β parameter deforming the superpotential of the dual gauge theory. Even

if the computation does not apply to the β-deformation of a generic toric Calabi-Yau, we

report it here since it provides a nice application of the formalism of Generalised Complex

Geometry.

The computation is based on the observation that for a generic deformation of N = 4

SYM it possible to relate the integrable pure spinor of the gravity solution (Ψ̂− for us) and

the superpotential of the dual gauge theory [15, 11]. More precisely it possible to write

the superpotential for a single D-brane probe, with a world-volume flux F and wrapping

a cycle Σ in the internal manifold, in terms of the closed pure spinor [15]. Since e3AΨ̂− is

closed, one can locally write e3AΨ̂− = dχ and the superpotential can be written as

W =

∫

Σ
χ|Σ ∧ eF . (A.1)
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Notice that (A.1) has precisely the form of the CS term in the standard D-brane action,

where χ plays the role of the twisted RR-potentials C ∧ eB . A non-abelian generalisation

of such CS term for multiple D-branes was obtained by Myers in [49], using an argument

essentially based on T-duality. Since the pure spinor Ψ̂− transforms precisely as the RR-

field strengths under T-duality, the same argument can be applied in our case, and the

resulting non-abelian superpotential has exactly the same form of Myers’ non-abelian CS

term, with C ∧ eB substituted by χ.

For the background obtained by β-deforming AdS5 ×S5, using the standard flat com-

plex coordinates on the internal warped C
3, we have

e3AΨ̂− = γ(z1z2dz3 + cyclic) + dz1 ∧ dz2 ∧ dz3 , (A.2)

and thus

χ = γz1z2z3 +
1

3!
ǫijkz

idzj ∧ dzk . (A.3)

Then, from the above argument and Myers’ non-abelian CS action we get the following

non-abelian superpotential for a stack of D3-branes (in units α′ = 1)

W = Str[e2iπιΦιΦχ](0)
∼ Tr[(1 + iπγ)Φ1Φ2Φ3 − (1 − iπγ)Φ1Φ3Φ2] , (A.4)

where Φi is the non-abelian scalar field describing the D3-brane fluctuations, which is

canonically associated to zi/(2πα′). Comparing with (2.2), since we need γ ≪ 1 to trust

the supergravity approximation, we conclude that

β = γ . (A.5)

B. Some explicit field theory examples

In this appendix we illustrate few points of the field theory analysis. Using the SPP

example, we show how the non commutative product acts on the undeformed superpotential

and motivate formula (2.8). We also discuss the non abelian branches of the theories Lp,q,q

for rational β.

B.1 Action of the non commutative product

To obtain the β-deformed gauge theory we pass from the simple product between fields to

the star product:

XiXj → Xi ∗Xj ≡ eiπβ(Qi∧Qj)XiXj (B.1)

where Xi are the elementary fields in the quiver.

The star product is non commutative but associative and the product of a string of n

fields takes the form:

Xa1 ∗ . . . ∗Xan ≡ b−1/2(
P

i<j Qai
∧Qaj

)Xa1 . . . Xan (B.2)
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Let us consider two generic mesonic fields with base point in the same gauge group: M =

Xa1 . . . Xam , N = Xb1 . . . Xbn . In the undeformed theory they commute MN = NM ,

but when we turn on the β-deformation this relation becomes: M̃ ∗ Ñ = Ñ ∗ M̃ , for the

quantities M̃ = Xa1 ∗ . . . ∗Xam , Ñ = Xb1 ∗ . . . ∗Xbn . This gives, using (B.2):

M̃Ñ = b(QM∧QN )ÑM̃ (B.3)

where we defined the charges of the composite fields: QM = Qa1 + . . . + Qam , QN =

Qb1 + . . . +Qbn . Note that relation (B.3) also holds in the same form for mesons M and

N , since they are proportional to M̃ and Ñ respectively, thanks again to (B.2). We obtain

therefore our general method (6.7) for computing commutation relations for mesons.

We would like now to understand the structure of the superpotential W for the β-

deformed theory, obtained by replacing the standard product with the star product in (B.1).

First of all, since W is a trace of mesons, consistency requires the star product to be

invariant under cyclic permutations of the fields. This happens because of the conservation

of charge:18 the two U(1) flavour charges of each meson are zero.

Then we want to show that W can always be put into the form (2.8) by rescaling

fields. Consider a generic toric gauge theory with G gauge groups, E elementary fields and

V monomials in the superpotential. We have the relation [18]:

G− E + V = 0 (B.4)

The superpotential W of the undeformed theory is a sum of V monomials mI , nJ
made with traces of products of elementary fields. Every elementary field appears in the

superpotential W once with the positive sign and once with the negative sign,

W =

V/2
∑

I=1

c+I mI −
V/2
∑

J=1

c−J nJ (B.5)

After β-deformation the coefficients c+I , c−J are replaced by generic complex numbers.

Rescaling the elementary chiral fields produces a rescaling also of the coefficients c+I ,

c−J , but note that the quantity
∏

I c
+
I

∏

J c
−
J

= const (B.6)

remains constant since every chiral field contributes just once in the numerator and just

once in the denominator. In the undeformed theory this constant is 1, while in the β-

deformed case its value can be written as b−αV/2, for some rational α.

Consider the action of the E dimensional group of chiral fields rescalings over the V

dimensional space of coefficients c+I , c−J in the superpotential. The subgroup that leaves

invariant a generic point (with all coefficients different from zero) is the group of global

18This is the analog of the cyclic invariance of the factor exp
“

− i
2
θij

P

0<µ<ν<n ki
µ kj

ν

”

in the n point

vertex interaction of the perturbative expansion of space-time non-commutative quantum field theories, due

to the conservation of momenta at each vertex.
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Figure 7: Dimer configuration and toric diagram for the SPP singularity.

symmetries of the superpotential. It is known that toric theories have G+1 global symme-

tries,19 therefore the dimension of a generic orbit is E − (G+ 1) = V − 1, thanks to (B.4).

This shows that (B.6) is the only algebraic constraint under field rescalings, and hence it

is always possible to put the superpotential in the form:

W =
∑

I

mI − bα
∑

J

nJ (B.7)

Let us explain in more detail a particular case, SPP .

All the information of a toric quiver gauge theory is encoded in a dimer graph [18] (see

figure 7). The idea is very simple: you draw a graph on T 2 such that it contains all the

information of the gauge theory: every link is a field, every node a superpotential term, and

every face is a gauge group. There exist efficient algorithms to compute the distribution

of charges ai for the various U(1) global symmetries of the gauge theory [50]. The charges

for every fields in the SPP gauge theory are given in figure 7. For the two global flavour

symmetries we are interested in, the trial charges are such that
∑

i ai = 0 (conservation

of flavour charges at every node). We can thus write the charges of the mesonic fields in

terms of the trial charges:

x = X11 → a1 + a2 , y = X12X21 → a3 + a4 + a5

w = X13X32X21 → a2 + 2a3 + a4 , z = X12X23X31 → a1 + a4 + 2a5

(B.8)

Using the values of the mesonic charges given in (6.13) one can now compute the charges

ai for the elementary fields. These will be a set of rational numbers. We can now use these

19These are the 2 flavour non anomalous symmetries plus G − 1 baryonic symmetries (anomalous and

non anomalous).
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q=p=1x

(1,0,0)

(0,q,1)

(1,p,1)

(1,0,1)(0,0,1)

(0,1,0) w

(−1,0,1)

y

(−q+p,−1,+q)

z

q=2,p=1

Figure 8: The toric diagrams of the C(Lp,q,q) singularity and their two well known special cases:

SPP , C(T 1,1).

charges to pass from the simple product to the star product (B.1) in every term in the

superpotential. This procedure will generate a phase factor in front of every term in the

superpotential. The interesting quantity is the invariant constant in (B.6):

∏

I c
+
I

∏

J c
−
J

= e2iπβ = b−1 (B.9)

The actual value of this constant implies that we can rescale the elementary fields in such

a way that the superpotential assumes the form:

W = X21X12X23X32 +X13X31X11 − b1/2(X32X23X31X13 +X12X21X11) (B.10)

Using the F-term equations from the β-deformed superpotential (B.10) one can reproduce

the commutation rules among mesons (6.14) given in the main text plus the β-deformed

version of the CY singularity: wz = bxy2.

B.2 Lp,q,q

In this section we give another example of the moduli space for rational β. Lp,q,q with

q ≥ p are an infinite class of Sasaki-Einstein spaces. For some values of p, q these spaces

are very well known. Indeed L1,1,1 = C(T 1,1), and L1,2,2 = SPP . The real cone over Lp,q,q

is a toric Calabi-Yau cone that can be globally described as an equation in C
4:

C(Lp,q,q) → xpyq = wz (B.11)

All the algebraic geometric information regarding these singularities can be encoded in a

toric diagram, see figure 8.

The variety is a complete intersection in C
4. Indeed to each generator of the dual

cone we can assign a coordinate like in figure 8. These coordinates are in one to one

correspondence with the mesonic field in the field theory generating the chiral ring, and the

first two coordinates of the vectors are their charges under the two U(1) flavour symmetries.

– 45 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
3

The generators of the mesonic algebra are x, y,w, z and thanks to their commutation

relations

xy = yx , xw = bwx , xz = b−1zx

yw = b−1wy , yz = bzy , wz = bq−pzw (B.12)

we can write the generic monomial element of the algebra in the ordered form:

Φk1,k2,k3,k4 = xk1yk2wk3zk4 (B.13)

The center of the algebra is given by the subset of the operators (B.13) that satisfy the

equations:

Φk1,k2,k3,k4x = bk4−k3xΦk1,k2,k3,k4

= xΦk1,k2,k3,k4 (B.14)

Φk1,k2,k3,k4y = bk3−k4yΦk1,k2,k3,k4

= yΦk1,k2,k3,k4 (B.15)

Φk1,k2,k3,k4w = bk1−k2−(q−p)k4wΦk1,k2,k3,k4

= wΦk1,k2,k3,k4 (B.16)

Φk1,k2,k3,k4z = bk2−k1+(q−p)k3zΦk1,k2,k3,k4

= zΦk1,k2,k3,k4 (B.17)

Because bn = 1 the elements of the center of the algebra are the subset of the operators of

the form (B.13) such that k3 = k4, k1 = k2 + (q − p)k4, k1 = k2 + (q − p)k3 mod n.

The generators of this algebra are Φn,0,0,0,Φ0,n,0,0,Φ0,0,n,0,Φ0,0,0,n,Φ1,1,0,0,Φq−p,0,1,1; we

call them respectively A,B,C,D,E,G. Using the F-term relation xpyq = wz we see that

G depends on the other generators through: G = Eq. Moreover the relations among

generators are:

ApBq = CD , En = AB . (B.18)

In the special case of q = p = 1 these equations reduce to those for the quotient of the

conifold. It is easy to see that equations (B.18) define the Zn×Zn orbifold of the C(Lp,q,q).

Take the coordinates x, y,w, z realizing C(Lp,q,q) as a quadric embedded in C
4. The action

of Zn × Zn is:

x, y,w, z → xδ, yδ−1, wξ, zδ−q+pξ−1 (B.19)

where δn = ξn = 1. The independent invariants of this action are A,B,C,D,E, and

they are subject to the constraints (B.18). Hence the equations (B.18) define the variety

C(Lp,q,q)/Zn × Zn.
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